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ABSTRACT 

 

The performance of pyrolysis oil in a large-scale combustion system is investigated to 

determine the feasibility of displacing fuel oil or natural gas in current heating and power 

infrastructure. A commercial 600 kW building heating boiler was installed and retrofitted to 

burn pyrolysis oil and pyrolysis oil mixtures at controlled conditions.  The boiler was 

equipped with the necessary fuel systems and instrumentation to enable accurate and 

independent control of the pilot light, natural gas flow, and liquid fuel system parameters, 

while maintaining standard boiler safety cutouts.  Exhaust analysis equipment was installed 

to allow measurements of particulate matter (PM), NO, CO, and unburned hydrocarbons 

(HC).  Shadowgraphy spray imaging and phase-Doppler particle analysis (PDPA) was 

performed on non-reacting fuel sprays to investigate atomization phenomena.  Ethanol was 

mixed with the pyrolysis oil at various concentrations and tested to determine the ideal 

concentration for spay and combustion performance.  Combustion tests were conducted in 

the boiler using #2 fuel oil, natural gas, pyrolysis oil, and mixtures of ethanol and pyrolysis 

oil.  Ethanol pyrolysis oil mixtures were primarily investigated while varying nozzles and 

nozzle conditions, overall equivalence ratio, and ethanol content of the mixture utilizing a 

natural gas pilot light and a natural gas co-fire to increase flame stability and broaden the 

range of stable conditions.  Combustion results showed very high emissions with a pressure 

atomizing nozzle and low emissions with an air atomized nozzle, agreeing with spray 

imaging results.  By optimizing atomization air pressure and equivalence ratio, PM, CO, and 

HC were brought down to levels near typical fuel oil combustion emissions with ethanol 

content as low as 20%.  NO was relatively unaffected by nozzle conditions, equivalence 
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ratio, and ethanol content. These data show the feasibility, range of conditions, and fuel 

injection strategies for clean combustion of bio-oil and displacement of natural gas or fuel oil 

in large-scale commercial boilers. 
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CHAPTER 1. INTRODUCTION 

 

1.1 Motivation 

 

In recent years there has been growing interest in alternative energy sources to fossil 

fuels due to limited supply as well as environmental impact.  In the United States, roughly 

85% of energy consumed for transportation, heating, and industrial use comes from burning 

fossil fuels.
1
  Pyrolysis oil offers an alternative to these fossil fuels, especially to liquids such 

as fuel oil.  Pyrolysis oil is made from non-food-based lignocellulose biomass such as wood 

or corn stover.  Pyrolysis oil is produced by heating the biomass to high temperatures in a 

reduced oxygen environment and by condensation of vapors that are released into a liquid 

fuel product.   

Because pyrolysis oil can be transported, stored, and injected in a similar manner as 

fuel oil, it is a candidate for use in heating and power generation applications such as 

industrial boilers and home scale heating applications.  However, pyrolysis oil has several 

properties that make it more challenging to use than fuel oil, such as its corrosive properties 

toward some materials, its instability, and its spray and combustion characteristics.  If 

measures can be taken to address these challenges on new as well as retrofitted boilers, then 

pyrolysis oil may be a viable replacement for fuel oil for these applications.  

Several studies have been conducted demonstrating the use of pyrolysis oil for a 

variety of applications including boilers,
31,32,33

 reciprocating engines,
65,66,67

 and gas 

turbines.
59,60,61

  Work has also been conducted on spray characteristics of pyrolysis oil
44,45,46
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and single droplet combustion.
71,72,73,74,75

  One promising solution to the high viscosity, low 

combustion stability, and low heating value of pyrolysis oil is to add ethanol, another 

renewable fuel.  This reduces viscosity and enhances spray and combustion characteristics.  

Mixtures of pyrolysis oil and ethanol have been investigated,
2
 but not in a large-scale boiler. 

In addition, thorough studies of spray, combustion, and emissions characteristics at this scale 

have not been conducted. The goal of this work is to investigate the feasibility and 

performance characteristics of a large-scale boiler while utilizing pyrolysis oil, including the 

evaluation of several strategies used to address the challenges associated with flame stability 

and emissions. In this effort, strategies that minimized changes to the current boiler 

infrastructure were of particular interest to maximize the potential for adoption of the 

proposed modifications on a commercial scale. Specific objectives are enumerated below.      

 

1.2 Objectives 

 

Objective 1:  To demonstrate that pyrolysis oil can be successfully utilized in existing large-

scale (district heating) boilers without exceeding the pollution output and while maintaining 

the safety standards of current technologies. 

Objective 2:  To investigate the challenges of utilizing pyrolysis oil with current liquid-fuel 

boiler infrastructure. 

Objective 3:  To understand spray characteristics and combustion properties of pyrolysis oil. 

 Objective 4:  To optimize boiler and fuel nozzle design and operation for ideal combustion 

performance. 
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1.3 Dissertation Outline 

 

Chapter 2 begins with a background on flames, sprays, nozzles, and pollutant 

formation in flames.  This is followed by a summary of recent related works in the field of 

pyrolysis oil combustion.  Chapter 3 describes apparatuses used for this study including the 

boiler and gas analyzers, as well as the spray apparatus and other fuel property measurement 

systems.  Chapter 4 presents the results of the spray and combustion tests, as well as relevant 

fuel property results.  Chapter 5 presents a summary of results and conclusions as well as 

directions for further investigation. 
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CHAPTER 2. LITERATURE REVIEW AND BACKGROUND 

 

2.1 Boiler Combustion Background 

 

Combustion is a process in which energy from fuel is released in the form of heat 

through exothermic oxidation reactions.  The region where the reaction and the heat release 

take place is known as the flame zone.  A flame can be characterized as fuel rich, fuel lean, 

or stoichiometric by the parameter λ in equation ( 1 ).  

 

  
(
    

     
⁄ )

      

(
    

     
⁄ )

              

 

( 1 ) 

 For λ = 1, the flame is said to be stoichiometric because the mass of air is equal to 

the theoretical amount needed to oxidize all of the fuel.  For λ < 1, the flame is said to be fuel 

rich, or simply “rich,” and some fuel will remain in the products while all the oxidizer is 

consumed.  Likewise, for λ > 1 the flame is said to be fuel lean, or just “lean,” and all fuel 

will be consumed and some excess oxidizer will remain.  In cases where the fuel and air are 

introduced separately into the combustion chamber, the value of  locally in the flame zone 

is not necessarily equal to the overall  and is dictated rather by the local mixing of the fuel 

and air. This is the case for most commercial boilers operating on liquid fuels, which utilize 

direction injection of the fuel into the combustion chamber. Most liquid-fueled combustors 

run overall lean or near stoichiometric because excess air is often necessary to ensure 

complete combustion of soot and carbon monoxide.
3
 In addition, it is important to maximize 
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fuel consumption as it is typically the more costly reactant, and operating lean or near 

stoichiometric helps to ensure complete combustion of the fuel.  Because most spray flames 

are fuel lean, it is often useful to consider a parameter known as excess air, particularly in the 

boiler industry.  Excess air is a percentage of air beyond what is needed to combust all of the 

fuel.  This is related to λ by equation ( 2 ). 

                         (   ) ( 2 ) 

In practice and in this work, this is determined by measuring the oxygen content of 

the exhaust and comparing this to the oxygen content of intake air, which at atmospheric 

conditions is very close to 21%.
4
 While lean conditions are advantageous for ensuring 

complete combustion of the fuel and reduced emissions, it is important to stay well above the 

lower flammability limit
5
 locally to ensure sufficient flame stability and avoid incomplete 

combustion due to flame extinction. This flame extinction occurs if the heat released from 

combustion of a lean mixture is not be sufficient to overcome the activation energy of the 

incoming reactant mixture.   In steady state applications, such as gas turbine combustors and 

boilers, the reactants and products move through a stationary flame zone, rather than the 

flame propagating in space. In this case, the nature of the mixing process determines whether 

the reactant mixture is premixed or non-premixed and locally lean or rich prior to reaching 

the flame zone.  

 

2.1.1 Premixed Flames  

Premixed flames occur in boilers when the liquid fuel has sufficient time to vaporize 

and mix with the incoming air prior to meeting the flame front.  Heat released from 
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combustion transfers to the fresh reactants via a recirculation, causing them to reach the 

activation energy and combust.  Flames propagate through reactants in a sheet known as a 

flame front.  The flame front is often irregular in shape, but locally the propagation is normal 

to the sheet at an approximate rate known as the laminar flame speed.
6
  In premixed flames 

the flame speed is governed by the reactivity of the fuel and the rate of heat transfer from 

combustion products to the upstream reactants.  The composition of reactants, such as 

pyrolysis oil, can have a significant effect on the flame speed; for instance mixtures with 

lower activation energy require less heat to transfer before the flame can propagate, while 

mixtures with a lower heat release will have slower heat transfer because of the smaller 

temperature gradient, resulting in slower propagation.  The ratio of oxidizer to fuel has a 

strong effect on flame speed with a maximum usually at stoichiometric conditions. If the 

flame blows out, the injected fuel will reach a premixed state within the combustor, and it is 

important to purge the combustor to avoid a rapid pressure rise and damage to the combustor. 

This is incorporated into the boiler safety system. 

 

2.1.2 Diffusion Flames  

 Diffusion flames occur at interfaces between fuel and oxidizer where the mixing rate 

is controlled by diffusion of the two substances.  In these cases, the flame propagates through 

mixed reactants much more quickly than reactants are added to the combustion process. As a 

result, the flame will be confined to a location where the fuel and oxidizer mixture is most 

reactive. One disadvantage of pure diffusion flames is that much of the combustion will 

occur in areas of the flame where there is more fuel than oxidizer locally present, or where 

more oxidizer than fuel is present.  This can contribute to incomplete combustion and 
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pollutant formation.  It is often useful to partially premix reactants by establishing the flame 

downstream of the region where the liquid fuel is introduced. In the case of air atomized 

nozzles, the fuel and air are in direct contact even before entering the combustion chamber, 

which leads to greater partial premixing. Indeed, most modern combustion processes exhibit 

a mixture of premixed and diffusion flame characteristics.
5
 

 

2.1.3 Spray Flames  

Liquid spray combustion is a process where a nozzle is used to atomize liquid fuel 

into fine droplets and mixed with a flow of oxidizer, usually air.
7
  The fine droplets have a 

very large surface area to encourage vaporization of the fuel so that mixing will occur 

between the fuel and oxidizer to allow combustion.  One of the main advantages of spray 

combustion over other types of combustors is that less volatile fuels can be effectively 

vaporized to sustain combustion.
8
   

Two extreme models of spray combustion can be generally described as 

homogeneous combustion and heterogeneous combustion,
8
 but most flames behave as a 

combination of the two.  Homogeneous spray flames as described by Williams occur when 

fuel droplets completely vaporize before entering a flame zone.  This type of combustion 

behaves essentially the same way as a premixed gaseous fueled flame because both reactants 

are in gaseous phase and are well mixed upon entering the flame zone.  This model typically 

applies to light fuels such as gasoline, but heavier fuels can be made to behave in this way as 

well.  When very fine atomization occurs such that droplets are around 10 m or smaller,
6
 

then flames using fuels that are relatively nonvolatile, such as #2 fuel oil, can be utilized 

under homogeneous combustion conditions.  Heterogeneous flames occur when fuel aerosols 
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remain present within the flame zone.  In this case, combustion is best characterized as a 

diffusion flame surrounding each droplet.  Components of the fuel droplet are evaporated and 

diffuse away from the liquid droplet until they meet oxidizer and combust.  Often times, 

heavier components of the fuel are vaporized last and in some cases solids will remain, 

resulting in combustion at the surface of the now solid particle.  This final phase of the 

combustion behaves like a solid fueled combustion process, similar to a coal fueled process.  

Heterogeneous combustion is better for describing combustion of heavy fuel oils, especially 

when rudimentary nozzles are used, producing relatively large droplets.   

Studies performed by Onuma and Ogasawara et- al. show that in most cases droplets 

are fully evaporated before reaching the flame front.
9
  Early studies that compared kerosene 

spray and propane non-premixed flames showed similar flame speed, flame structure, and 

emission compositions, suggesting that all fuel droplets are vaporized before reaching the 

flame front
9
.  This result prompted further studies with heavier fuels and the results also 

showed evidence that the fuel is vaporized, despite the lower volatility of the heavy fuel oil.
10

  

Other studies have shown that sprays can behave even as premixed flames in terms of flame 

speed.
11

 In the case of pyrolysis oil, poor atomization can lead to diffusion flames around 

droplets that survive into the flame, thereby affecting the total pollutant emissions. 

 

2.1.4 Characterization of Sprays 

Liquid fuel sprays have been studied extensively for combustion applications.  Sprays 

are produced by nozzles which are specially designed to create fine droplets of fuel or other 

liquids depending on the application.  Nozzles can be made to produce a wide variety of 

spray patterns and function over a variety of operating conditions.  A few of the important 
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parameters of a spray in terms of combustion are the spray angle, the Sauter Mean Diameter 

(SMD), the spatial distribution, and the fuel flow rate.  

Perhaps the most important, the SMD is a representation of the surface area to 

volume ratio of droplets produced in a spray.  The SMD is defined as the diameter of a 

droplet which shares the overall surface area to volume ratio with that of the spray.  Since 

sprays generally consist of droplets of a variety of diameters, the SMD is used as a way to 

quantify the distribution down to a single representative value
12

.  The surface area of a spray 

has a strong effect on droplet evaporation and so it is useful to quantify sprays for flames by 

such a measure.  This is accomplished mathematically by summing the volume of droplets 

and dividing by the sum area of the droplets or sample of droplets as shown in equation ( 3 ). 

 
    

∑   

∑   
 

( 3 ) 

For combustion applications, a spray is generally a hollow or solid cone, depending 

on the design of the nozzle.  Both types of cones allow fuel to be spread out across a flow of 

gaseous oxidizer.  The spray angle of a nozzle is the angle of the cone of fluid droplets as it 

leaves the nozzle.  A wider spray angle permits shorter combustors since the fuel does not 

need to travel axially a great distance before it is spread wide enough to mix with oxidizer.   

 

2.1.5 Spray Nozzles 

For proper atomization, surface tension must be overcome to turn a flow of liquid into 

a mist of droplets and generate substantial new surface area. The surface tension of a fuel is 

affected by its composition and is expected to vary depending on the pyrolysis oil mixture. 

The process of overcoming surface tension takes place through the use of a nozzle, and 
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energy must be input to do the work required to overcome this surface tension. Typically, 

nozzles used for combustion are either pressure atomizing or air atomized depending on the 

source of this energy. In this work, both types of nozzles are of interest, with the former 

being common for fuel oil applications and the latter being used for heavier oils.  

Spray nozzles typically generate flow patterns where the fluid is formed into 

ligaments which ultimately break up into droplets through stretching and necking processes.  

When the ligaments are sufficiently long and disturbances are present, surface tension forces 

will act to neck narrow points of the strand until the strand is broken.
13

  The elongation of 

ligaments is driven by inertial effects generated by the action of the nozzle, acting against the 

surface tension which acts to shorten the ligaments until they condense back to a single 

sphere.  The ratio of inertial effects to surface tension is quantified by the Weber Number as 

shown in equation  ( 4 ). 

 
   

     
 

 
( 4 ) 

 

 The Weber number of a spray is affected by several parameters.  The characteristic 

length (D0) of the spray is the diameter of the ligaments or jet in the spray.  The density (ρ) 

and the surface tension (σ) compete, so denser fluids will have higher weber numbers while 

fluids with stronger surface tension will have lower weber numbers given the same 

conditions.  Since velocity (v) is a squared term, there is a strong effect from velocity.  A 

high Weber Number spray will tend to produce more completely atomized sprays, while low 

Weber Number sprays may not properly break up as intended and will leave large droplets in 

the spray.
14
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Pressure atomizing nozzles use high pressures to do the work of breaking the fuel into 

droplets.  The simplest style of pressure atomizing nozzle is a simple orifice which produces 

a high velocity jet of fuel.  As the fuel jet travels from the nozzle, it is affected by 

aerodynamic disturbances and inertial and surface tension effects until it forms the ligaments 

which break up as previously described.  Simple orifice nozzles can produce only very 

narrow spray angles and is thus limited to certain specialized applications where this is 

acceptable or desired. 

The simplex swirl nozzle is one of the most common pressure atomizing nozzles for 

combustion use and is the type used, in part, for this study.  A simplex swirl nozzle has a 

swirl chamber with tangential entrances and a single central outlet.  As fuel enters, it spirals 

around the chamber forming a spinning hollow cylinder due to centripetal acceleration.  

When the inner wall of this cylinder reaches the outlet hole, it spills out retaining both an 

axial velocity and a tangential velocity.  This forms an axially symmetric hollow cone of fuel 

leaving the nozzle into the combustion area.  As the cone moves away from the nozzle and its 

diameter increases, its walls become thinner until it forms ligaments which then break into 

droplets.  The spray angle is primarily determined by the design of the nozzle.  The fuel flow 

rate in these nozzles is typically proportional to the square root of the pressure applied to the 

fuel.  These nozzles work well only for relatively narrow range of fuel flow rates since a 

certain pressure is required to produce a fine spray, and a large increase in pressure is 

required to produce an increase in flow.  This type of nozzle is also very sensitive to solids in 

the fuel since a small disturbance or blockage in the fine passageways or in the swirl chamber 

can disrupt the fragile swirl pattern that must match up to the outlet to produce the spray.   
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Air atomized nozzles are fed fuel as well as a stream of pressurized air or steam.  

Most of the energy used to atomize the fuel comes from the atomizing air stream.  These 

nozzles generally do not need such a high pressure to operate properly since there is 

substantial energy available in pressurized gas.  In this type of nozzle, the air is fed through 

one or more channels where is reaches a high velocity.  Fuel is then fed in roughly normal to 

this stream where droplets are sheared off and entrained into the air flow.  In the case of the 

air atomized nozzle used in this study, three such streams feed into a plenum surrounding a 

swirl chamber.  The gas streams combine then enter the swirl chamber through six tangential 

channels, before exiting the orifice as a solid cone of fuel droplets, fuel vapor, and atomizing 

air.  The swirling chamber both shapes the cone and encourages further mixing between the 

entrained fuel and air in order to produce finer, more evenly distributed droplets.  Because of 

the way the fuel and air mix, it is necessary to have the fuel and the air at nearly the same 

pressure.  Fuel pressure is not substantially affected by fuel flow rate so a fuel metering 

system must be employed.  Since the atomizing energy comes primarily from the air, fuel 

flow can be varied all the way down to zero without sacrificing atomizing performance.  The 

SMD is usually inversely proportional to the difference in velocity between the atomizing air 

and the fuel.
15

  In most cases this difference is the velocity of gas, which controlled mainly 

by the pressure of the gas.   

Since the atomizing gas is much less dense than fuel used in the pressure atomizing 

nozzle, passages are much larger.  There is a turbulent flow pattern in the swirl chamber 

rather than the precise fluid cylinder of the pressure atomizing nozzle.  The exit orifice is also 

much larger.  All of these make the nozzle much more robust against clogging.  Air atomized 

nozzles allow for a wide range of fuel flow rates because they can achieve fine atomization 



www.manaraa.com

13 

 

for a range of fuel flow rates. However, air atomized nozzles are more costly because a 

source of atomizing air and a fuel flow control system are needed. 

 

2.1.6 Flame Stabilization 

In order for a flame to remain steady and ensure proper performance, it must be 

stabilized.  Typically this means designing the combustor in such a way as to control, usually 

to increase, the mixing between fuel and air.  Rapid mixing and turbulence as well as 

recirculation will have effects of both reducing emissions and providing a flame that is robust 

even in high throughput conditions. 

One of the most common methods of flame stabilization, especially for liquid fueled 

heating applications, is to use an air swirler.  In this style of combustor, combustion air 

passes through angled vanes surrounding the fuel nozzle.  This causes the air to spiral 

outward, but also to recirculate backwards up the center axis of the flow due to the pressure 

gradient created by the centripetal acceleration of the spiraling flow.  This flow has effects on 

aerodynamic breakup of the spray, but also has the effect of achieving strong turbulent 

mixing of the flame, increasing the flame speed drastically and creating a more robust flame 

by using the recirculating products to help relight incoming reactants.  The recirculation can 

also have the effect of increasing residence time of the flame.  It is known that matching and 

aligning the nozzle to the swirler can significantly reduce pollutants and increase flame 

stability.
16

  As the breakup and vaporization properties of pyrolysis oil can differ 

substantially from fuel oil, it is of interest to evaluate the effects of the air swirler geometry 

on combustion performance of pyrolysis oil. 
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2.2  Pollutant Formation 

 

 There has been significant effort to understand and control the formation of pollutants 

in combustion exhaust due to their potential harmful effects.  Combustion processes can 

produce hundreds of compounds, but trace pollutants that have been particularly targeted for 

study and reduction include particulate matter (PM), oxides of nitrogen (NOx), oxides of 

sulfur (SOx), and incomplete combustion compounds such as carbon monoxide (CO) and 

unburned hydrocarbons (HCs).  There have also been measures to combat carbon dioxide 

(CO2) emissions, and of course, the use of pyrolysis oil with carbon derived from the 

atmosphere is one way to do this. However, it is important that the other pollutant emissions 

remain low during combustion of pyrolysis oil.   

 

2.2.1 Pollutant Measurement Techniques  

To analyze the amount of pollutants produced, most tests rely on instruments which 

draw a small sample from the exhaust stream to be analyzed for a particular pollutant species 

concentration.  In applications like boilers, the amount of energy produced is normally 

proportional to the amount of fuel consumed.  Since pollutant standards are normalized to 

energy output, the concentration levels can be compared directly, so long as excess air is 

accounted for in the concentration.  For applications where this is not the case, the total flow 

rate of the exhaust gas should also be measured, and the total emissions from the test can be 

determined by multiplying the concentration by the flow rate.  Many sensors can produce 

time resolved results which is particularly useful for measuring emissions when the exhaust 
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flow is transient, so that concentrations during times of higher exhaust flow can be more 

heavily weighted in the final result.  Batch sampling techniques, such as those commonly 

used to measure PM, present a challenge since the time resolution is lost when the sample is 

cumulatively collected into one measurement.  This can be corrected for by sampling at a 

flow rate proportionally to the instantaneous exhaust flow rate, such that less sample is 

collected at times when less exhaust is being released from the process. 

 

2.2.2 Particulate Matter  

Particulate matter (PM) is defined by the United States Environmental Protection 

Agency as solid and liquid aerosols present suspended in exhaust gases collected under very 

specific conditions.
17

  These specific conditions are required to produce repeatable results 

since there are many constituents of PM that will evaporate or deposit onto sampling device 

surfaces under differing conditions.  For official PM tests such as for engine certification, 

isokinetic sampling is required from the exhaust stream, which means that a sample is 

extracted from the flow without significantly changing velocity.  The sample is then 

transported to and passed through a filter which collects PM.  The tubing from the sample 

probe to the filter must be controlled to a specified temperature.  The filter is weighed before 

and after the test to determine how much PM was collected during the sampling period, and 

this can be extrapolated to determine how much PM was produced in the entire exhaust 

stream.  For transient operations, the sampling flow rate must be proportional to 

instantaneous exhaust flow rate since the measurement is a batch technique.  This also has 

the effect of matching the sample inlet velocity to the exhaust stack velocity, maintaining 

isokinetic sampling. 
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PM usually consists of four major components including soot, ash, polycyclic 

aromatic hydrocarbons (PAH) and liquid hydrocarbons remaining from the fuel or other 

hydrocarbon sources such as lubrication oil in engines.
18

  Soot is composed primarily of 

elemental carbon that forms as a solid during gas-phase condensation reactions of fuel 

constituents in the flame.  Soot is typically formed in areas of a flame that are locally fuel 

rich.  Fuels with a higher percentage of aromatic constituents are more likely to form soot, 

even in flames that are slightly lean overall.
19

  Generally, many nucleated particles will 

agglomerate to form larger irregular shaped soot particles,
20

 but soot particles can also 

continue to grow as material is deposited on their surface as the gaseous reactions continue.  

The black carbon content of soot causes it to act as a blackbody in terms of absorption and 

radiation.  This is responsible for much of the coloration in flames, especially in visibly 

orange and yellow colored flames, and can contribute significantly to radiation heat transfer 

in the combustion zone of boilers.  The soot concentration emitted from the process is much 

lower than the maximum concentration of soot found within the flame, suggesting that soot is 

oxidized within the flame.  This effect is increased in high temperature flames with long 

residence times.  It has been shown that the hydroxyl radical (OH) in the flame zone is 

primarily responsible for oxidizing the soot and is more effective than free O2.
20

  This means 

that soot which can escape the flame zone will not easily be oxidized despite high 

temperature and presence of oxygen, and so these remaining particles will likely be emitted 

in the process exhaust.  

PAH is formed in a manner similar to soot.
20

  It is produced by the polymerization of 

fuel constituents.  PAH is usually found adsorbed onto the surface of soot particles, but is 

chemically different from soot.  PAH tends to be present in fuels with aromatic components. 
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It has been shown by diluting fuel air mixtures with inert gases that PAH formation is 

decreased with lower temperatures in the fuel rich zones. Vigorous mixing of the fuel and 

oxidizer can decrease both PAH and soot production by reducing the presence of fuel rich 

areas within the flame, encouraging combustion of the fuel rather than heating of the fuel in 

fuel rich areas. 

Other solid particles caused by polymerization of fuels which can contribute to PM 

emissions, especially in the combustion of heavy oils or pyrolysis oil, are cenospheres.  

Cenospheres are hollow spheres created as fuel droplets evaporate.  Heavier constituents of 

the fuel are left at the surface of droplets as lighter constituents are boiled off.  The heavier 

components polymerize into larger molecules and ultimately to solids.  This phenomenon is 

more common for fuels with high viscosity.  Typically the cenospheres can be in a size range 

that is similar to the original diameter of the drop, but may even be slightly larger due to 

expansion caused when the inner light components bubble and stretch the surface.  These 

Cenospheres present mostly the same problems as other forms of PM, including being 

pollutants and fouling heat exchange surfaces or causing wear to moving parts, although they 

are much larger and therefore more likely to form deposits.  Cenospheres can be burned up in 

the flame, but because of their solid nature their combustion rates are much slower than that 

of fuels which evaporate before burning.
8
  Another problem with cenospheres when they 

reach large quantities is that their energy is not released in the flame, reducing combustion 

efficiency.  Cenospheres can contain up to 10% of the mass of their original fuel droplet
8
, 

which is significant from an efficiency standpoint. Fuels high in asphaltene and fuels with 

high viscosity have the greatest likelihood to form cenospheres, but fuels can be more 

precisely characterized by a Conradson carbon number test, which is a test of residue formed 



www.manaraa.com

18 

 

by pyrolysis under specific conditions.  Volatile fuels will tend to leave behind little or no 

residue, while heavy fuels may leave behind a coke or char which is responsible for forming 

cenospheres during combustion. 

Ash consists of inorganic impurities in the fuel such as metals, silica, and salts which 

cannot be combusted in a normal flame.  The primary way to reduce emissions of ash is to 

reduce the content of these impurities in the fuel.   

Hydrocarbons in PM are simply reactants which did not completely burn.  This is 

often caused by low combustion temperature, poor fuel atomization, or by contaminants 

entering the exhaust stream at a point after combustion has occurred, such as engine lube oil 

leaking past exhaust valve seals. Fine fuel atomization, excellent mixing of fuel and oxidizer, 

and high combustion temperatures are used to combat all forms of PM. 

 

2.2.3 Oxides of Nitrogen  

Nitrogen Oxides (NOx) include several gaseous phase molecules consisting of 

nitrogen and oxygen.  There are three primary ways that NOx is formed in a flame, known in 

literature as Thermal NOx formation, Prompt NOx formation, and fuel bound nitrogen 

oxidation.
21

 The latter is of particular concern for pyrolysis oil combustion because of the 

non-negligible amount of nitrogen  bound in the oil.  

Thermal NOx formation is governed by a set of equilibrium reactions known as the 

Zeldovich mechanism. 
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2O + N NO + N  ( 5 ) 

 
2N + O NO + O  ( 6 ) 

 N + OH NO + H  
( 7 ) 

 Diatomic nitrogen is present in oxidizing air and is the most stable of the participants 

in this reaction and so reaction ( 5 ) is typically the limiting reaction for the production of 

thermal NOx.  High temperatures are required to break the strong bonds of the N2 molecule, 

making thermal NOx production very dependent on flame temperature.  Once the reaction 

has occurred and the reactants leave the flame zone, the instances of collision between NO 

and O or H are uncommon because O and H are radicals only found in the flame zone, so the 

thermal NOx in the exhaust is normally frozen at the peak thermal NOx in the flame, rather 

than returning to the low temperature equilibrium levels.  One way to reduce the production 

of NOx is to decrease the peak temperatures and residence time in the flame.  This is contrary 

to what is favorable for low PM emissions, often resulting in a trade-off between NOx and 

PM. 

 Prompt NOx is also formed through similar pathways, but the N radical that is needed 

for reactions ( 6 ) and ( 7 ) instead comes from the reaction between the CH radical and the 

N2 molecule. 

 
2CH + N HCN + N  ( 8 ) 

The CH radical comes directly from hydrocarbon fuel, and the N2 again comes from 

the oxidizing air.  The hydrocyanic acid (HCN) molecule will continue to combust but does 

not play a further role in prompt NOx production. 
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Fuel bound nitrogen oxidation occurs by nitrogen in the fuel being directly oxidized 

during combustion.
22

  This is typically dependent primarily on the mass concentration of 

nitrogen in the fuel, but can also be affected by combustion conditions.  This mechanism is 

generally not sensitive to what molecule the nitrogen is bound to in the fuel.  It has been 

shown that rich combustion reduces the severity of fuel bound nitrogen oxidation, again 

contrary to conditions favorable for reducing PM.  It has been shown that staged combustion 

can reduce fuel bound nitrogen oxidation while maintaining overall lean combustion.  It has 

also been shown that fuel bound nitrogen can produce HCN and ammonia (NH3) which can 

further react to form NOx in the exhaust.  For this reason, it is desirable to have lower 

nitrogen contents in fuels, and this is a challenge for biomass-based fuels. 

 

2.2.4 Oxides of Sulfur  

Oxides of sulfur or SOx are composed of a variety of sulfur containing molecules 

primarily consisting of SO2, SO3, and H2SO4.
22

  SOx emissions are usually present in their 

final molecular form in the fuel, and escape the process chemically unchanged.  Since they 

are not created by flame conditions, little can be done to reduce the SOx emissions short of 

reducing fuel sulfur content and reducing fuel consumption.  Sulfur compounds are 

particularly harmful to catalyzed particulate filters used on modern diesel engines, leading to 

rapid catalyst degradation.  Heavy petroleum distillate fuels can contain up to 7% sulfur 

compounds.  Biofuels including pyrolysis oil tend to have very low sulfur content, and so 

they produce very little SOx in comparison to petroleum based fuels.
23

 This is a potential 

advantage for the use of pyrolysis oil in commercial scale boilers. 
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2.2.5 Carbon Monoxide and Hydrocarbons 

Carbon monoxide (CO) and gaseous phase hydrocarbons (HC) are incomplete 

combustion products.
5
  Carbon monoxide is commonly produced in large quantities during 

rich combustion, in which there is not enough oxygen available to fully combust carbon to 

CO2.  CO is present in all combustion flames as an intermediate between reactants and 

products and its production and destruction are considered kinetically controlled reactions.  

CO is normally combusted into CO2, but if the flame is rapidly cooled, equilibrium reactions 

may fail to reach the normally very low equilibrium concentrations expected in the exhaust, 

resulting in higher CO emissions.  Competing reactions can also consume radicals 

responsible for combusting CO, thereby increasing residual CO in the exhaust.  Gaseous 

hydrocarbons can exit flames under similar conditions to CO, if the flame is quenched or if 

poor mixing occurs such that the hydrocarbons are not fully combusted.  Gaseous-phase 

hydrocarbons are separate from PM in that they are gaseous under sampling conditions, 

making their measurement similar to that of other gaseous species.  Both CO and HC 

emissions are reduced by maintaining a well-mixed, lean combustion process at sufficiently 

high temperatures and residence times to yield complete combustion.  While these design 

characteristics are desirable for reducing PM, they are not ideal for minimizing NOx. 

 

2.3 Fast Pyrolysis Process 

 

  Fast Pyrolysis is the process of heating biomass feedstock in a low oxygen 

environment to decompose the organic material into vapors, aerosols, and char.  The vapors 
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are separated into fractions via staged cooling and condensation. .  The pyrolysis oil 

produced has a much greater density than raw biomass, making it more practical as a fuel in 

terms of storage and transportation.
24,25

  Gaseous and solid fractions can be combusted, in 

part, to provide heat for the process, or they can be utilized for other applications.  The solid 

fraction, known as bio-char, is rich in nutrients and can be used as a fertilizer for soil. This 

can potentially replace nutrients removed from the field through growing plants for biomass 

production.
25,26,27

  The reuse of less desired feedstock components to provide heat can reduce 

or eliminate the need for external energy input to the process.  The fast pyrolysis process is 

usually adjusted to maximize liquid fuel production by controlling the heating temperature 

and residence time.  The temperatures used for fast pyrolysis are 450-650 °C, and the 

residence time is typically around two seconds.
28

  The liquid yield can be as high as 75% of 

the biomass feedstock.
25

  The process is compatible with a wide variety of cellulose biomass 

feedstocks such as corn stover, which represents the largest share of cellulose biomass 

feedstock production in the U.S.
25,29

 

 

2.4  Liquid Fuel Properties 

 

 There are several properties of liquid fuels that can affect performance in combustion 

applications.  Energy content or higher heating value (HHV) is important because it 

determines how much mass of the fuel must be produced, stored, transported, and consumed 

in order to meet a given heat demand.  High fuel energy density is desirable for storage and 

transportation since more mass of fuel can fit in the same vessel.
25

  Properties such as 

viscosity, surface tension, and volatility affect atomization in combustion sprays, which can 
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have effects on combustion performance.  Chemical properties of fuels must be considered 

because system components that come into contact with the fuel must be chemically 

compatible with the fuel.   

 

2.4.1 Properties of Pyrolysis Oil  

Pyrolysis oil can have a range of properties depending on feedstock and the process 

used to produce it.  The density is typically around 1200 g/ccm.  Pyrolysis oil is significantly 

more dense than petroleum derived fuel oils (by 20-30%).  The HHV for pyrolysis oil can be 

up to 19 MJ/kg, compared to most petroleum fuel oils which are near 44 MJ/kg.  This low 

energy content can be partially attributed to the high water content of pyrolysis oil ranging 

from 15-35 wt%.  Pyrolysis oil also contains oxygenated components which tend to have 

lower energy content than hydrocarbons. However, because of its high density, the HHV of 

pyrolysis oil is about 50% that of petroleum fuel oil on a volumetric basis. 

The viscosity can have a very wide range depending on conditions during the 

production and the fraction selection method, but the most desirable fuel samples for spray 

atomization tend to have lower viscosity, as low as 15cP.
24,30

  This is more viscous that #2 

fuel oil, but less viscous than #6 fuel oil at room temperature, however #6 fuel oil is typically 

heated before spraying to reduce viscosity and improve atomization characteristics. Attempts 

have been made to produce nozzles that are optimized for the viscosity range of pyrolysis 

oil.
31,32,33

   

Pyrolysis oil is corrosive to many materials because of its low pH and its strong 

solvent components.  Whetted components must be made from stainless steel or polymers 

compatible with pyrolysis oil such as polypropylene, polyethylene or polytetraflouroethylene 
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(PTFE).  Metals such as aluminum, non-stainless steel, and several kinds of rubber are 

quickly damaged by contact with pyrolysis oil, resulting in leaking or failure of the parts.  

Solid constituents in pyrolysis oil can agglomerate in small passages such as those in nozzles, 

causing clogs.  Many researchers have found it difficult to remove solids from pyrolysis oil 

by filtering in its raw form.
34,35,36

 

Oasmaa et- al. has studied fuel properties of pyrolysis oil extensively and has 

determined that a few characteristics are most important in the product for it to be used as a 

fuel.
37,38,39,40

  These properties are flash point, tendency to separate, water content, solid 

content, and homogeneity.  Solid content is most important with regard to clogging.  Water 

content was shown to increase the flashpoint while lowering heating value and decreasing 

stability, but had beneficial thinning effects on viscosity.  Flash point is a critical property for 

both material hazard status as well as fuel combustion properties.  Flash point measurements 

are a challenge when the flash point is greater than the boiling point of water since water has 

a tendency to leave the sample before the test.
41

  A desirable property of fuel is to resist 

separation to ensure consistent performance from run to run and from beginning of a tank to 

the end.  Pyrolysis oil has been shown to become more viscous as it ages and separates. 

 

2.4.2 Properties of Pyrolysis Oil Mixtures with Ethanol 

Pyrolysis oil is miscible with ethanol.  The addition of ethanol to pyrolysis oil can 

substantially improve the combustion performance of the solution by acting in several ways.  

Ethanol can substantially reduce the viscosity of the solution, which allows better 

atomization through conventional spray nozzles.  Ethanol can also accelerate filtering 

processes by lowering viscosity. Adding ethanol contributes to a higher volatile content in 
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the solution.
42

  The low boiling point of ethanol within droplets may further contribute to 

droplet breakup when the more volatile components of the fuel droplet boil within the droplet 

during the combustion process, contributing to a phenomenon known as micro-explosions.
43

  

Micro-explosions can be present in any liquid fuel composed of components with different 

boiling points.  

 

2.5 Spray Studies of Pyrolysis Oil 

 

  Several studies have been conducted targeting sprays of pyrolysis oil
44,45,46

 and 

emulsions of pyrolysis oil with other liquids.  These studies seek to quantify the spray 

characteristics of pyrolysis oil when compared to conventional fuels to better understand the 

atomization process for combustion applications.  Several of these have shown that pyrolysis 

oil sprays can be attained that are fine enough to be used for combustion. Current work does 

not show spatial distributions of droplets or visual characteristics of pyrolysis oil sprays.  

Sauter mean diameter (SMD) is one of the most important parameters to quantify spray 

quality. 

Garcia-Perez et al. has published work focused on droplet breakup, studying such 

parameters as SMD and nozzle volumetric flowrate characteristics.
44

 Conventional pressure 

atomizing nozzles were used with vacuum produced pyrolysis oil from softwood bark.  SMD 

was measured using a Malvern Master-sizer 2600 Series Particle Sizer.  It was shown that the 

pyrolysis oil behaved as expected from other Newtonian fluids.  Sprays were produced with 

droplets as fine as 50 m SMD, comparable to many fuel oil sprays in modern applications.
44

  

Many conditions produced droplets as large are 150 m which require longer residence times 
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to fully burn out.  It was shown that the flow rate of fuel through the nozzles was governed 

by a square root function of the pressure drop across the nozzle, as is true of conventional 

Newtonian fluids for this kind of nozzle.
12

 

 Chiaramonte et al. has investigated the SMD of pyrolysis oil as well as fuel oil, water, 

and emulsions of fuel oil and pyrolysis oil.
46

  Fiber Optic Quasi Elastic Light Scattering was 

used to determine SMD.  This technique as applied does not provide a visualization of the 

spray.  A variety of existing Delevan nozzles were used in this study.  This study showed it 

was possible to attain reasonable SMD with pyrolysis oil using conventional pressure 

atomizing nozzles. 

Weimer et al. performed spray tests on surrogates of pyrolysis oil, but did not use 

pyrolysis oil itself.  The surrogate fuel was a mixture of water and glycol with similar spray 

properties to pyrolysis oil through an air atomized nozzle.  Measurement techniques included 

Laser Doppler Anemometry (LDA), Particle Image Velicometry (PIV), and Phase Doppler 

Particle Analysis (PDPA).  Results and findings were limited, but it was shown that SMD 

was affected by the fuel-to-atomizing air ratio in the nozzle, which is not predicted by the 

idealized model of the air atomized nozzle, where SMD is solely dependent on velocity 

difference between fuel and air at the point of mixing. 

Overall, detailed studies of sprays utilizing ethanol mixed with pyrolysis oil are 

lacking, especially with air atomized nozzles. In addition, spray visualization and phase-

Doppler particle analysis (PDPA) of droplet sizes and velocities is generally lacking for 

pyrolysis oil sprays. 
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2.6 Combustion Studies in Swirl Stabilized Combustors for Heating 

 

 Several studies have been performed on the combustion of pyrolysis oil and pyrolysis 

oil mixtures in swirl stabilized combustors, which are the most common style of combustor 

for heating and stationary power generation applications. These are summarized below.   

 

2.6.1 Combustion Studies of Pyrolysis Oil in Swirl Stabilized Combustors 

 Pyrolysis oil has been studied as a potential alternative fuel for several applications 

including home scale heating,
47

 and industrial scale boilers larger than 200 

kW.
31,32,33,34,35,40,48,49,50,51,52,53

  Applications of pyrolysis oil for industrial boilers have often 

used fuel heating to reduce viscosity and improve spray performance, as is typical with heavy 

fuel oil.  Many of these investigators faced challenges under some conditions with pyrolysis 

oil polymerizing in the nozzle (coking) or otherwise forming clogs.
32,33,34,35,36,47,48,49,51

  Most 

of these combustors were started on pilot fuels before being switched to pyrolysis 

oil.
31,32,33,34,35,36,48,49,50,51,52

 

 Several studies have been able to successfully use pressure atomized nozzles on 

industrial boiler scales.
34,35,48,50

  Gust et al. used a standard pressure atomized nozzle for 

combustion but was unable to match the droplet size distribution of light fuel oil even when 

running heated pyrolysis oil at higher than standard fuel pressures.
34,35

 

 Studies using air atomized nozzles have also been successful in burning pyrolysis oil.  

Shihadeh et al. found that steam atomization had less problems with fuel coking when 

compared to air atomization.
36

  Van De Kamp et al. found that coking could still occur when 
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using steam at low flow rates.
33,51

  Preto et al. compared a commercially available steam 

atomization nozzle for heavy fuel oil to a custom designed steam atomization nozzle 

originally developed for spraying water-coal slurries.  The heavy fuel oil nozzle allowed 

droplets to persist through the combustion zone until they landed in the bottom of the 

combustor, while the water-coal slurry nozzle allowed complete combustion of the pyrolysis 

oil droplets.
32

  Investigators who used custom nozzles had better results with the custom 

nozzle than with commercial nozzles.
31,32,33

 

 Flame stability was also an issue for these tests and some studies took additional 

measures to improve stability.  Kyto et al. implemented an enhanced swirler to generate 

stronger swirl in order to stabilize the flame.
48

  Gust et al. and Oasmaa et al. experimented 

with radiant devices designed to put more energy back into the flame and into the spray to 

improve stability with some success.
34,35,49

  Pollutant emissions were also studied and in most 

cases the results were compared with typical results for the light or heavy fuel oil that the 

pyrolysis oil would replace.  Generally, CO emissions were found to be slightly higher for 

pyrolysis oil than for light fuel oil,
31,33,36,51,54

 but some studies found substantially higher 

CO,
49,53

 while Gust et al. found that CO levels were nearly the same for both fuels.
34,35

  NOx 

was also generally found to be slightly higher for pyrolysis oil than for light fuel 

oil.
31,34,35,36,49,54

  Oasmaa et al. found that NOx was lower for pyrolysis oil than for heavy fuel 

oil.
49

  Van De Kamp et al. found that NOx was higher for pyrolysis oil than light fuel oil for 

the same combustion conditions, but that substantial reduction in NOx could be achieved 

through staged combustion, indicating that fuel bound nitrogen oxidation was a major 

contributor.
33,51

  PM was found to be higher for pyrolysis oil than for light fuel oil for all of 

these studies, and much higher for most.
31,34,35,36,48,49,50,54

  Rossi et al. found that PM levels 
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from pyrolysis oil were lower than for heavy fuel oil,
50

 but Van De Kamp et al. and Oasmaa 

et al. found that PM was higher than heavy fuel oil.
33,49,51

  SOx was measured in only a few 

of these studies because it is well known that SOx emissions are directly related to fuel sulfur 

content which is low for biomass fuels.  Huffman et al. and Rossi et al. confirmed low SOx 

emissions from pyrolysis oil.
31,50,54

 

 Wissmiller et al. conducted research regarding combustion of pyrolysis oil in a home 

heating scale swirl stabilized combustor.
47

  The experimental setup included optical 

accessibility for several in-situ measurements including flame luminosity measurements and 

planar laser measurements such as Planar Laser Induced Incandescence (PLII), Planar Laser 

Induced Fluorescence (PLIF) and Mie Scattering inside the combustor.  Gaseous emissions 

including HC, NOx, and CO were quantified as well as PM.  Scanning electron microscope 

images of PM samples show that PM consisted of primarily cenospheres rather than typical 

soot agglomerations.  Air atomized nozzles showed significant advantage over pressure 

atomizing nozzles for reducing PM.  Other parameters such as combustion air preheating, 

fuel water content, and fuel fixed carbon content did not show significant effects on emission 

performance.  This study focused primarily on combustion of pyrolysis oil and did not 

include mixtures of ethanol. The heat rates in these studies did not exceed 30 kW. 

 

2.6.2 Combustion Studies of Pyrolysis Oil Mixtures with Ethanol in Swirl 

Stabilized Combustors 

Pyrolysis oil solutions with ethanol are desirable because the properties of the 

solution are substantially changed from those of pure pyrolysis oil.
42,43

 Advantages include a 
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reduction in viscosity and increase in volatility, as well as other potential phenomena which 

may improve combustion performance.  

Tzanetakis et al. has recently investigated the combustion of pyrolysis oil and ethanol 

solutions in swirl stabilized combustors.
42,55,56

  These investigations were carried out in a 

burner sized for a 10 kW flame.  A mixture of 80% pyrolysis oil and 20% ethanol was used 

and other parameters were investigated as means of minimizing emissions and achieving 

good flame stability.   It was found that PM consisted of mostly cenospheres and ash, 

although cenospheres were largely eliminated under ideal conditions.
56

  It was found that 

high amounts of atomization air were very important to achieving good atomization and 

combustion, while swirl air helped flame stability.  Air and fuel preheat were also utilized to 

reduce CO and HC emissions.  NOx levels were attributed primarily to fuel-bound nitrogen 

oxidation.
56

  The results of this study demonstrate an investigation of relatively small-scale 

applications for pyrolysis oil ethanol mixtures. 

Stamatov et al. has published work on pyrolysis oil and pyrolysis oil mixed with 

ethanol for use in home heating scale burners.
57,58

  NOx emissions were studied in particular 

and it was found that NOx levels were higher than predicted by thermal NOx models, but 

that NOx could be reduced by mixing pyrolysis oil with ethanol.  Ethanol had the effect of 

decreasing the radiant heat flux from the flame which is important for some heat exchangers, 

but is less important for heat exchangers that rely on convection.  These studies did not report 

findings for PM. 

Moloodi et al. completed a MS dissertation studying the combustion of pyrolysis oil 

mixtures with ethanol in a lab scale swirl stabilized combustor.
2
  This study found that CO 

and HC emissions were reduced with the addition of ethanol and that flame stability 
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increased with ethanol concentration.  The study also investigated the sources of PM 

including ash.  These findings are important, but there are differences between lab scale 

studies and practical applications in existing real world equipment.  

 

2.7 Combustion Studies of Pyrolysis Oil in Gas Turbines 

 

Some studies have been carried out using pyrolysis oil for gas turbines.
59,60,61,62,63,64

  

Like works in boilers, these studies have utilized fuel heating to reduce the viscosity of 

pyrolysis oil to improve spray characteristics.  These studies also used a pilot fuel to start up 

before switching to pyrolysis oil.  Gas turbines present additional challenges over boilers due 

to the high performance turbine blades moving in the exhaust.  This is particularly a problem 

for particulates which may strike the blades at high speed forming deposits and corrosion. 

Andrews et al. carried out tests on an Orenda GT2500, 2500 kWe turbine with an 

experimental dual-fuel nozzle designed to improve spray quality.  They found that deposits 

formed on many of the combustion surfaces, including turbine blades.
59,60,61

  It was found 

that these deposits could be removed by running conventional fuels in the turbine, but 

corrosion had occurred on the turbine blades, even in the relatively short duration of the tests.   

Strenzoik et al. performed similar tests on a Deutz T216 75kWe gas turbine.
62

  They 

were not able to sustain operation with pure pyrolysis oil, but instead used a dual-fuel nozzle 

to co-burn light fuel oil with pyrolysis oil.  They also noted that deposits formed in the 

combustion area and on the turbine blades but were unable to remove the deposits by 

switching fuels.  NOx, HC, and CO data were collected showing slightly increased CO and 
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HC and slightly decreased NOx compared to light fuel oil.  It was also shown that turndown 

ratio could not match that of light fuel oil.
62

 

These studies indicate that is it typical to rely on combustion enhancement with 

conventional fuels in industrial scale combustion devices, if not through mixing then through 

dual-fuel strategies. 

 

2.8 Combustion Studies of Pyrolysis Oil in Reciprocating Engines 

 

Several studies have been done on pyrolysis oil for use in reciprocating 

engines.
65,66,67,68,69,70

  This is desirable since a large portion of the world’s energy 

consumption is in the form of transportation fuels burned in reciprocating engines.  These 

studies have all been for compression ignition diesel engines because pyrolysis oil is more 

similar to diesel fuel than to gasoline in terms of volatility.  Common problems involved the 

corrosive nature of the fuel and clogging by the solid components in pyrolysis oil.  Clogging 

is particularly an issue with the very fine passages in diesel fuel injectors as compared to 

lower pressure, higher flow nozzles found in boilers and gas turbine applications. 

Solantausta et al. ran a stationary high speed diesel engine on pyrolysis oil.
66

  A pilot 

injection of light fuel oil was used to ensure reliable ignition.  Significant wear resulted in the 

fuel pump and fuel injector in a short time. The results of emissions tests showed increased 

CO production, but they were able to successfully reduce CO to normal levels by using a 

commercially available catalytic converter. 

Shihadeh et al. was able to burn pyrolysis oil in a diesel engine and quantify 

parameters such as ignition delay and heat release rate which are studied for conventional 



www.manaraa.com

33 

 

fuels in order to optimize engine operation.  Shihadeh found that there was a longer ignition 

delay with pyrolysis oil and that ignition was less reliable with pyrolysis oil.  In order to 

combat the ignition reliability, preheated combustion air was utilized, which increased the 

robustness of ignition of pyrolysis oil.  It was also determined that the heat release rate was 

lower for pyrolysis oil than for diesel fuel and this was attributed to slower combustion 

kinematics than that of diesel fuel.
68

  As #2 fuel oil very similar to diesel fuel, it is anticipated 

that longer ignition delay and lower heat release rate may pose similar challenges for when 

replacing fuel oil with pyrolysis oil in boilers. In the current work, it is hoped that mixing 

with ethanol can help to alleviate these challenges. 

   

2.9 Single Droplet Combustion Studies 

 

Several important studies have been carried out characterizing the evaporation and 

combustion processes of a single droplet of pyrolysis oil.
7172737475

  These studies have 

focused on how PM is formed, as well as observing other phenomena such as micro-

explosions that can be better understood to enhance combustion performance.  Several of 

these single droplet combustion tests place a droplet onto a thermocouple so that the 

temperature of the droplet can be measured throughout the combustion event.
71,72

 

D’Alessio et al. utilized high speed optical measurement of combustion of droplets in 

a temperature controlled furnace.  Simultaneous temperature measurements indicate stages of 

evaporation as light components are boiled out of the droplet before heavy components boil.  

This results in observed micro-explosions which eject some mass from the droplet, but do not 
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completely destroy the droplet.  As components boil away, they reach air and react with a 

flame.
72

 

Shaddix et al. carried out single droplet studies on a variety of fuels examining the 

effects of additives such as methanol and the presence of water on the burnout time of 

droplets.
74

  This study showed that methanol did not have as strong of an effect on droplet 

burnout time as water, but that water would cause further delayed microexplosions which 

were more effective at shortening droplet burnout time.
74

  This study also considered the 

effects of bio-char content in the fuel on droplet burnout time. 

These studies show the potential benefits of utilizing ethanol in pyrolysis oil to 

enhance droplet break up without significantly reducing droplet burn-out time. However, it is 

difficult to relate single droplet studies with the realistic boiler combustion environment. 
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CHAPTER 3. EXPERIMENTAL SETUP 

 The purpose of this investigation is to characterize and understand pyrolysis oil 

combustion for use in existing industrial boilers, and to understand what accommodations 

must be made to substitute pyrolysis oil for conventional fuels.  A commercial boiler was 

installed in order to facilitate combustion testing with pyrolysis oil, and modifications were 

made to various systems to study effects on the combustion performance of pyrolysis oil.  

The boiler was fitted with exhaust gas analyzers that are typically used for industrial fuel oil 

boilers to quantify combustion performance from an emissions standpoint.   

 Fuel properties tests are also a crucial part of understanding pyrolysis oil combustion.  

In this study, parameters such as viscosity and volatility are examined, as well as simulated 

aging tests for stability.  Samples were tested for higher heating value and Thermo-

Gravimetric Analysis (TGA) was performed to determine fuel composition. 

 Fuel sprays are a critical part of pyrolysis oil combustion performance.  Spray nozzles 

were installed in a non-combustion apparatus and the sprays were studied using 

shadowgraphy and a Phase-Doppler Particle Analyzer (PDPA).  These sprays used the same 

nozzles used in combustion tests and used both surrogate fuels and pyrolysis oil ethanol 

mixtures. 

     

3.1 Boiler Combustion Rig 

 

 For this study, a building heating boiler was provided for use by the State of Iowa 

Capitol Complex to investigate the combustion of pyrolysis oil.  The boiler could not be 
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installed into a steam load since there was no accommodation at the facility to incorporate 

the boiler into the facility steam system.  However, this should not affect the evaluation of 

combustion performance.  The fuel system was largely replaced to accommodate both 

pressure and air atomized nozzles for pyrolysis oil.   Other modifications, described below, 

were also made to better accommodate pyrolysis oil and to study the effects of operating 

parameters. 

 

3.1.1 Boiler 

The boiler used in this study is a Burnham 4F-240 three-pass boiler.  This boiler is 

rated for up to 60 BHP, which equivalent to about 600 kW heat rate.  The boiler was 

originally installed to burn natural gas to heat a building within the State of Iowa Capitol 

Complex.  This model of boiler is normally sold configured for either liquid or gaseous fuel. 

In this case, many of the components for operation for liquid fuel were never installed 

because the unit was sold configured for natural gas.  In addition, when the boiler was 

uninstalled from its original location, many of the systems were disabled. 

The three-pass design employed a combustion chamber as the first pass.  Gases 

traveling from the combustion chamber loop around to a set of fire tubes, which constitutes 

the second pass.  The gases reverse direction one more time into a second set of fire tubes to 

make the third pass.  These fire tubes are submerged in water to maximize heat transfer from 

the gas to the water chamber.  The water chamber also surrounds the combustion chamber to 

further increase the heat transfer area and to reduce heat lost to the boiler room. 

Several systems had to be brought back up to operation when the boiler was installed 

for this study.  The control system had to be reinstalled and all of the safety cutouts had to be 
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checked and brought back to operation.  In addition, since the boiler had never been 

configured to burn liquid fuels, a few new components had to be installed including a liquid 

fuel nozzle and the rest of the experimental fuel system. 

 

3.1.2 Installation of the Boiler at Iowa State University 

Boilers rely on a system of supporting equipment to operate properly to provide the 

needed heat to the building.  At the very least a normal boiler system requires electrical 

power, feed water, steam line, radiators in the buildings, and fuel.  Electrical power needed 

for the main fan and for control systems and pumps was readily available, but the rest of 

these accommodations could not be provided since there was not actually a building radiator 

system to heat during the tests.   

 

3.1.2.1 Water handling system 

The water side of a boiler normally operates as a closed loop, where water is boiled 

into steam in the water chamber of the boiler and exits to the steam pipe.  It then travels to 

radiators in the buildings, and after the energy is extracted, it returns to liquid phase.  It then 

travels back to the boiler as water, typically driven by some kind of a pump and control 

system to maintain a near constant level of water in the boiler and radiators.  New water must 

be let into the system when the water returning from the radiators does not match the amount 

of water leaving the boiler as steam due to leaks or other effects.  This system will involve 

water treatment to remove contaminants from the water which could lead to corrosion and 
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deposits.  Normally this closed loop operates under pressure of up to 15 psig for a low-

pressure boiler, as used here. 

 In this installation, there was no demand for steam, so the conventional method of 

sending steam to the radiators and receiving water from them was not feasible.  Instead, 

steam was vented at atmospheric pressure out of a tube through the roof of the building 

alongside of the combustion exhaust tube.  This water leaving the system was made up for 

with tap water, filtered to reduce sediment.  This was less than ideal as dissolved 

contaminants could still get through the water filter, but for the low number of test hours 

required from this boiler this was not an issue.  Another slight drawback of this setup was 

that the boiling point of the water was lowered without the steam pressure.  Between 

atmospheric pressure and 15 psig, the boiling point of water changes by 21°C.  This was not 

considered as a problem for this combustion study since the temperature change of 21°C is 

small compared to the large temperature difference between the flame temperature and the 

boiling temperature on the water side.  The water feed was controlled by a solenoid valve 

which was triggered by the high level switch of one of the low water safety cutout switches, 

so that when the water level fell below full, the water was turned on and water from the tap 

flowed into the boiler.  Since the water coming in was not heated, this may have led to cooler 

areas in the water side of the boiler, although this was assumed not to affect combustion.  

Furthermore, steam output from the boiler was not observed to change with the cycling of the 

fill water flow, indicating this did not have a significant effect on heat flux.   
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3.1.2.2 Control system modifications 

 For the purposes of the combustion study, it was necessary to make several 

modifications in order to gain independent control of combustion parameters of the boiler, 

while leaving safety measures operational.  Safety systems on this boiler include an air purge 

cycle before startup, a flame detector to shut down fuel in the event of flame blowout, and 

low water cutoffs.   

The control unit normally controls when the inlet air fan powers on and off, as well as 

all fuel valves including the natural gas pilot and ignition transformer. It is also normally 

responsible for adjusting firing rate to match heat demand.  This authority normally allows it 

to fully control procedures such as the pre-combustion purge cycle and the safety cutout, as 

well as to adjust both fuel and air flow to match firing rate demand.  In the current setup, 

solenoid valves were placed in all fuel lines, including newly installed liquid fuel lines, to 

ensure that the controller maintained the authority to shut off fuel if a problem was detected. 

Under normal operation, an actuator controlled by the control unit mechanically operates a 

damper to control air flow, while a butterfly valve controls the main flow of natural gas.  

Pilot natural gas flow is normally controlled by an orifice nozzle.  For the current 

experiments, it was necessary to have direct control over fuel flow parameters while leaving 

the control unit capable of operating solenoid valves for safety, as discussed later in Section 

3.1.2.3 Fuel system. 

 Airflow is one of the main parameters that must be controlled for combustion tests.  

The damper which is normally used to control airflow was still used, but it was disconnected 

from the actuator and connected to a fixed bracket to allow the damper to be set to specific 

repeatable settings.  These settings were calibrated by measuring airflow with a hot wire 
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anemometer in the exhaust outlet during fan tests without fuel.  The results of this calibration 

can be found in Appendix A. 

 During preliminary tests, the standard ultraviolet flame detector triggered some false 

alarms, failing to detect the pyrolysis oil flame even when the flame had not blown out.  The 

control unit would then shut off fuel and indicate a flame blowout.  This was difficult to 

diagnose because after each instance of failure to detect flame, the flame was extinguished by 

the fuel shutoff.  Fortunately there is a grace period of several seconds when the flame 

detector loses signal before triggering the alarm to safeguard against false alarms caused by a 

flicker.  Flame was observed through the viewing port during this grace period, indicating 

that the flame detector was falsely identifying a flame blowout.  To remedy the problem, an 

alternate infrared flame detector was installed and caused no further issues.   

 

3.1.2.3 Fuel system 

 It was necessary to construct a fuel system which would allow independent control of 

main combustion natural gas, pilot natural gas, and liquid fuel nozzle parameters.  Different 

systems were needed to accommodate pressure atomized nozzles and air atomized nozzles 

due to the differing pressure and flow characteristics of these kinds of nozzles.  Pyrolysis oil 

is challenging to measure and control because of its corrosive nature and because of its 

inconsistent viscosity and other properties. 

 Normally, the natural gas is metered by the control unit through the use of solenoid 

valves, orifices, and actuator-controlled butterfly valves.  Solenoid valves provide a positive 

shutoff but cannot regulate the flow rate, while the butterfly valve does not positively seal but 

can be adjusted to produce different flow rates.  In the main natural gas flow, these valves are 
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normally used in series to vary the natural gas flow from zero to the desired load.  The pilot 

flame circuit for natural gas is normally regulated by a solenoid valve and a fixed orifice, 

since the pilot light does not need to accommodate turndown.   

In the setup used for this investigation, the natural gas entered the facility at a 

relatively high pressure compared to the design pressure for the butterfly valve, so the main 

natural gas flow rate and that of the pilot flame was controlled by rotameters with large 

pressure drops in the needle valves built into the units.  The pilot light was needed for many 

combustion conditions, even when the control unit no longer called for it. Simply bypassing 

the pilot solenoid valve would not allow the controller to properly use the pilot light in the 

startup sequence or to disable the pilot in the event of a flame blowout.  A system was 

implemented as shown in Figure 1.   

 

Figure 1: Natural gas schematic. 

 



www.manaraa.com

42 

 

A bypass with a check valve and a manual globe valve was placed between the main 

natural gas line and the pilot rotameter in order to supply the pilot light with gas when either 

the pilot or main natural gas solenoids were open.  This still allows the pilot light to be 

disabled when both solenoid valves are closed, or when the manual globe valve is closed and 

the pilot solenoid is closed by the control unit. 

 To quantify pyrolysis oil fuel flow, which could not easily be measured directly, an 

automotive wideband oxygen sensor was installed in the exhaust duct.  The oxygen sensor is 

an Innovate Motorsports MTX-L Wideband O2 Sensor.  This sensor was capable of 

indicating the overall λ value anywhere from rich conditions through very lean conditions 

with a resolution of ±0.01.  With the air flow rate known from the damper calibration, the λ 

value was used to determine and adjust the fuel flow rate.  Since natural gas flow rates were 

measured by the rotameters, they could be subtracted from the overall fuel flow equation to 

determine how much liquid fuel was consumed.  Controlling fuel flow rate manually, the λ 

value could be maintained at ±5%.  Finer control was usually not attainable due variations in 

the uniformity of the pyrolysis oil, which caused the flow rate through the controlling system 

to drift slightly. 

 To supply fuel to pressure atomized nozzles, it was necessary to pressurize the fuel to 

100 psi or higher.  Pumps compatible with the viscosity and chemical properties of pyrolysis 

oil for these pressure ranges are costly and may not offer consistent performance for 

combustion tests.  Instead, liquid fuels were placed into sealed stainless steel containers 

which could be pressurized with nitrogen gas from a compressed gas cylinder.  The pressure 

forced the fuel through the lines and valves up to the nozzle and into the combustion 

chamber.  Pressure atomizing nozzles generally have a fuel flow rate controlled by fuel 
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pressure and nozzle design, so controlling the pressure controlled the flow.  Nitrogen was 

used for pressurizing the fuel so that there was no risk of combustion occurring inside the 

tank.  A single nitrogen line was used to pressurize multiple tanks to the same pressure, 

allowing for switching from one tank to another rapidly via T-valves in order to switch from 

one fuel to another. 

 A similar setup was used at a much lower pressure to supply fuel to the air atomized 

nozzle, but the flow had to be controlled with a separate needle valve because unlike for 

pressure atomizing nozzles, the fuel flow rate for air atomized nozzles is not a well-behaved 

function of fuel pressure.  The same pressure tanks were used, but a stainless steel needle 

valve was placed before the nozzle and adjusted manually to control the fuel flow rate based 

on the real-time oxygen sensor readings.  The fuel tank pressure was set above the intended 

atomization air pressure so that fuel would be driven toward the nozzle and air would not 

propagate from the nozzle to the fuel tank.  Atomization air was provided through a pressure 

regulator by a shop air line from the facility.  The pressure regulator was used to adjust the 

atomizing pressure. 

 

3.1.2.4 Fuel pump 

 It was desirable to investigate the feasibility of using pyrolysis oil in a conventional 

pump, since the pressurized tank system is not suitable for continuous operation.   In order to 

test feasibility with current technologies, a commercial fuel pump designed for heavy fuel oil 

was implemented in place of the pressurized tank system.  The pump produced a constant 

fuel flow, which was relieved through a pressure release valve into a bypass stream which 

circulated back to the original fuel tank, as consistent with the intended operation.  The flow 
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could be adjusted by changing the relief valve settings or by adjusting a needle valve in the 

fuel line.  This setup allowed the pump to operate at full bypass if there were a nozzle clog or 

if the fuel cutout valve was closed in an emergency without causing excessive back pressure.  

The pump was wired in series with the blower fan, so it also ran during the startup and purge 

sequences, but fuel was simply routed back to the tank.   

 The fuel pump also produced atomizing air, by drawing air in from the room through 

an inlet filter/silencer.  This side of the pump was lubricated with a flow of motor oil from 

another reservoir.  Atomizing air became laden with oil droplets in the pump, so it was routed 

back to the reservoir where it was passed through steel wool screens which captured oil 

droplets from the air to be recirculated.  Air left this chamber through another hose which led 

to the air atomized nozzle.  A stopcock was placed at the top of the chamber to vent some of 

the atomization air to adjust the atomizing air pressure.  This entire system was plumbed 

consistently with installation instructions for the pump as it was designed to be used on 

heavy fuel boilers. 

 The pump was able to operate in this way for 3-4 weeks of testing before problems 

began to arise.  Ultimately this was probably only a few hours of operation over the course of 

this time, but the whetted parts were exposed to pyrolysis oil nearly the entire time.  

Ultimately, the pump was again replaced with the tank system when the airflow output began 

to degrade and it would no longer maintain atomization air pressure for the desired 

conditions.  It is not clear what the cause was for this degradation.  It is possible that the 

pyrolysis oil may have damaged the pump through its corrosive or abrasive properties, or 

failed to provide adequate lubrication during operation.  There may also have been 

unintended deviation from proper maintenance or priming procedures which could have 
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caused damage as well.  It does not appear that the mechanical seals of the pump ever failed 

because no pyrolysis oil was found to leak from the shaft seal or between the air and fuel 

systems.  The oil in the air pump system maintained its level and did not appear to be 

contaminated with pyrolysis oil.  The pump proved too costly to replace or investigate further 

when the tank system enabled adequate performance. 

 

3.1.2.5 Fuel nozzles 

 Fuel nozzles included both pressure atomized and air atomized nozzles provided by 

Delevan.  The pressure atomized nozzles used in these tests were Delevan WDA pressure 

atomizing simplex swirl nozzles.  These nozzles are sized with a rated fuel flow rate for fuels 

at 100 psi, however they can operate at many different pressures with flow rate varying 

approximately with the square root of pressure for low-viscosity fluids and at moderate flow 

velocities.  The pressure atomized nozzles utilized in this work produce a hollow cone with a 

design spray angle of 70°.  The air atomized nozzle tested was a Delevan AIRO nozzle, rated 

for a range of flows up to 60 gph.  The conditions tested with this nozzle were well below the 

maximum flow capabilities of the nozzle, but with air atomized nozzles, the quality of 

atomization is controlled by the air pressure and is decoupled from the fuel flow rate, 

allowing for a very wide turndown ratio.  This style of nozzle produces a solid cone, with 

angle varying slightly depending on conditions.  The two nozzles are pictured in Figure 2.   
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Figure 2: Delevan WDA pressure atomizing nozzle (top) and AIRO nozzle (bottom).
76

 

     

 

3.1.2.6 Modified swirler 

 Previous studies have demonstrated improved performance of pyrolysis oil 

combustion by modifying the construction of the swirler.  For this study, a replacement 

swirler was fabricated that has more pronounced swirl vanes and a greater effective flow 

area.  Effective flow area measurements and other information, including pictures of the 
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swirler, can be found in Appendix C.  The new swirler fits as a direct replacement part so that 

either swirler can be easily substituted for different test conditions.  

 

3.1.3 Exhaust Analysis Equipment 

 One of the objectives of this study is to ensure that pyrolysis oil emissions levels can 

be competitive with fuel oil emissions levels.  The emissions measured include PM, CO, 

NOx and HCs.  Samples are taken from the exhaust gas and analyzed by instruments 

specialized for each of these species.  These samples are taken from the vertical section of 

the exhaust stack about three feet above the exit of the heat exchanger.  It is assumed that 

exhaust gases are well mixed after passing through all three passes of the boiler. 

 

3.1.3.1 PM analyzer 

PM was measured by an AVL 415 which is designed to measure black carbon soot.  

A sampling probe was installed in the exhaust stack at the sampling point according to 

recommendations in the AVL 415 operators manual.  During each measurement, it takes a 

fixed volume sample of exhaust gas from the sampling probe through a temperature 

controlled sample train, passing the sample through a white filter paper.  The instrument then 

moves the filter paper onto an apparatus which shines light onto the paper and measures the 

reflectance of the paper.  The amount of soot collected on the paper is related to the amount 

of light absorbed.  A correlation has been developed by AVL between sample volume, 

reflectance, and PM levels.  From reflectance, a number known as Filter Smoke Number 

(FSN) is produced, and from this number the software calculates a concentration of soot in 
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mg/m
3
.  FSN can indicate the level of loading on the filter paper, which can indicate whether 

a larger or smaller sample volume is needed for subsequent tests and ensure that the filter 

loading is in a range that can be accurately correlated by the algorithm.  These samples were 

taken in triplicate for each measurement point to provide insight into the variability and 

precision of the measurement.  This algorithm was developed for PM generated by fuel oil, 

so it may not be an exact correlation to PM produced by pyrolysis oil.  Because all results are 

reported with the same method, this serves as at least a relative measurement. 

 

3.1.3.2 Gaseous analyzer 

 Gaseous emissions such as CO, HC, and NOx are typically measured on industrial 

boilers only when they are installed and serviced. These emissions are minimized to ensure 

that the boiler is operating properly.  Because of this, it is typical in the industry to utilize 

portable gaseous analyzers that boiler service technicians use during boiler visits.  The 

instruments used were two IMR 1400 units, one for NO and the other for CO and HC, which 

were available from the same supplier used by the personnel that serviced boilers at the 

Capitol Complex.  These gas analyzers measure the concentration of pollutants as well as the 

concentrations of O2 and CO2 to determine a corrected pollutant concentration.  This 

concentration is normalized to the fuel consumption, correcting for the diluting effect of 

excess air on pollutant concentration.  The corrected values are used in this study to 

normalize readings between conditions that have dissimilar equivalence ratios, so that more 

lean conditions are properly compared to less lean conditions without bias due to simple air 

dilution of the emissions.  The measurement of O2 also serves as a redundant measurement to 
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verify the λ value reported by the wideband O2 sensor and used for determining the fuel flow 

rate. 

The sampling procedures for gases are less rigorous than PM because gases do not 

have a tendency to deposit on surfaces or change phase with temperature.  Gases also do not 

tend to separate based on inertial effects because of the very low density and strong 

propensity to diffuse to a uniform composition across a volume of gas.  Because of this, it is 

only necessary to ensure the gas is well mixed before sampling; in this case, isokinetic 

sampling is not important.  The sample for gaseous species is taken from near the PM sample 

point, but slightly closer to the boiler because the AVL 415 utilizes a purge cycle where shop 

air is introduced into the exhaust stream.  By sampling upstream of the PM probe, the 

possibility of sample dilution by purge air is avoided.  

  

3.2 Fuel Property Measurements 

 

 Several measurements were collected to quantify fuel properties and determine what 

is responsible for the combustion performance observed in the boiler.  These tests were 

performed for samples of pyrolysis oil and on mixtures with ethanol using specialized 

equipment.  The viscosity of solutions with respect to ethanol concentration was measured 

with a viscometer.  Higher Heating Value (HHV) of samples was measured using a bomb 

calorimeter.  Thermo-gravimetric Analysis (TGA) was used to quantify constituents of 

samples by boiling point.  The Ried vapor pressure test was applied to pyrolysis oil and 

mixtures with limited success.  
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3.2.1 Sample Preparation 

 The pyrolysis oil used for this study was made from pine derived cellulose biomass.  

This sample was left over from a much larger scale test and was in storage for roughly 4 

years before it was used in this study.  This could cause it to differ slightly from a newly 

made sample, due to the potential aging effects of pyrolysis oil, but it was assumed that this 

would not be a problem so long as the sample was well mixed.   

This type of fuel study requires repeatable fuel sample compositions that can yield 

stable results.  There were several obstacles in reaching this type of performance which were 

overcome using a variety of strategies.  Pyrolysis oil was supplied to Iowa State University in 

the form of a single 350 gallon container, containing about 250 gallons initially upon arrival, 

creating several practical problems of dealing with such a large single container in a lab 

setting. Samples had to be prepared in small batches mixed to the right ethanol content.  

Furthermore, particulates in the pyrolysis oil are sporadic in nature and tend to cause clogs in 

a manner that is highly disruptive to testing, if not managed.   

 To deal with such a large container of pyrolysis oil, several processes were 

developed.  To help pull consistent samples from the container, the container was stirred 

before use with a large paint mixer on a power drill.  This mixer had to be modified to fit 

through the relatively small opening of the container, but proved to be the best option for 

mixing such a large container.  The mixer had a long shaft which was capable of reaching 

near the bottom of the tank and had angled blades to encourage vertical movement of the 

fluid, specifically to mix heavier components from the bottom of the tank with lighter 

components at the top.  Despite this mixing, a small variation between samples persisted.  
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 To extract a manageable sample from the tank following mixing, several techniques 

were employed.  A metal manual pump was used to extract one set of samples, but the 

pyrolysis oil attacked the pump during the time before the next use, so it was replaced with a 

polyethylene pump, which proved to be chemically resistant.  As larger volumes were needed 

for more tests, the manual pumping of the thick liquid proved quite demanding and a siphon 

system was developed to allow gravity to do the work.  A thick hose was attached to a spigot 

at the bottom of the tank and routed to the basement below, so that a sample would flow 

freely when the spigot was opened. 

 Mixing ethanol with pyrolysis oil is a relatively straightforward process, since ethanol 

is miscible with pyrolysis oil.  Ethanol was measured into a 7 gallon jug using a 1 liter flask, 

then the jug was filled to a marking representing the final volume.  This jug was manageable 

enough to shake vigorously to ensure uniform mixing between the ethanol and pyrolysis oil. 

 Several methods were used to prevent interruptions due to clogs, especially in the 

nozzles.  Inline filters were employed, but the capacity for collecting solids was low, 

requiring frequent servicing and interrupting tests when the inline filters had filled with 

particles.  They were also limited in pressure or flow rate.  It was determined that the best 

method would be to filter the pyrolysis oil mixture after mixing with ethanol using disposable 

polypropylene felt filter bags rated for 100 micron particle size.  The ethanol lowered the 

viscosity, increasing the rate of filtering.  This was usually completed within a few days 

before running a test condition. 
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3.2.2 Viscosity Measurement 

 The viscosity of several liquid samples were measured using a Brookfield DVII+ 

viscometer.  The samples included pyrolysis-oil/ethanol mixtures and several other oils 

which would later be used as surrogate liquids for spray testing.  The apparatus includes a 

sample cup which holds the sample and has a known diameter and volume.  A rotor is 

suspended from above this cup such that the end of the rotor with a calibrated shape is 

submerged in the sample in the cup.  When the rotor is turned at a known rate, it creates a 

film of known thickness between the rotor and the walls of the cup based on Taylor-Couette 

flow. The rotor is turned at a known rate by a stepper motor which allows very precise 

control of angular velocity.  Reaction torque on the motor is measured, enabling calculation 

of the stress of the fluid in the Taylor-Couette flow.  These measurements allow for 

calculation of strain rate as well as stress in the fluid, so a stress vs. strain rate relationship 

can be quantified to extract viscosity.  The rotation speed can be varied to determine if 

viscosity measurements are affected by strain rate, indicating if the fluid is Newtonian or 

Non-Newtonian over the strain rate regimes tested.  To improve the quality of the 

measurements, the sample is temperature controlled by circulating water through a water 

jacket around the sample cup at a range of temperatures from room temperature and above.  

This is necessary because many fluids change viscosity substantially with temperature.  

Before placing samples into the viscometer, the samples are thoroughly mixed with a vortex 

mixer to ensure that the sample is representative of the contents of the sample container.   
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3.2.3 Thermogravimetric Analysis 

 Several samples were prepared for composition testing using thermo-gravimetric 

analysis (TGA).  The instrument used was the Mettler Toledo TGA/DSC 1 

thermogravimetric analyzer operated under procedures specified by ASTM D5142.  A small 

crucible is cleaned and pre-weighed for each sample.  Each sample for each measurement, 

roughly 100 mg, is put into the pre-weighed crucible and the crucible is loaded into the 

instrument.  Again, the vortex mixer is used before extracting the sample from the sample 

container.  When the sample is loaded, the weight of the crucible is entered by the operator 

and is assigned to the sample.  The instrument is capable of holding multiple samples 

simultaneously and feeding them through the measurement chamber one at a time to 

maximize utilization of the instrument.  When a sample is queued, it is moved by the 

instrument into the measurement chamber which is temperature controlled and has a sensitive 

scale to continually monitor the weight of the sample over the course of the test.  The 

temperature of the chamber is slowly raised from room temperature to a pre-selected final 

temperature over the course of 30 minutes or more.  At the end of the test oxygen is 

introduced to the chamber to burn off any remaining combustible hydrocarbons such as bio-

char.  The weight is recorded as various constituents of the sample evaporate and are vented 

away from the sample.  The mass vs. temperature profile of the sample can be used to 

quantify constituents based on their boiling points.  The distribution can be divided into four 

main areas including water content, volatiles, fixed carbon, and ash.  Indicated water content 

will also include substances such as ethanol that have boiling points lower than water.  

Volatiles are considered any substances which evaporate above 105 C during the test, up to 
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the final temperature.  When oxygen is introduced, remaining fixed carbon is removed by 

combustion, leaving only ash.   

 

3.2.4 Higher Heating Value 

 To determine the energy content of a fuel, the best method is to burn a sample in a 

calibrated, well-insulated, sealed combustion chamber known as a bomb calorimeter.  The 

particular unit used for this study is the Parr 1341 Oxygen Bomb Calorimeter operated under 

procedures specified by ASTM D240.  This instrument also has a sensitive temperature 

measurement probe to measure the temperature of the chamber before and after combusting 

the sample.  A sample is weighed and put into a crucible, since higher heating value is an 

intrinsic value.  The sample size is divided out, so the sample size is not important so long as 

enough energy is released to be accurately analyzed.  The vortex mixer is again used to 

ensure a representative sample.  The amount of energy released in the test is the same as the 

heat capacity of the sample times the temperature change.  There is an igniter system which 

puts a known amount of electrical energy into a wire in the combustion chamber.  A cotton 

thread is placed on this heated wire and also contacts the sample in order to initiate 

combustion when the test is started.  The heat from the wire and thread can be subtracted 

from the total heat easily because of the uniform heat input by these from run to run.  There 

is also a system for metering oxygen into the sample volume to combust the sample, because 

the oxygen must be let in slowly during and after ignition to avoid violent reactions that 

could splatter the sample.   
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3.2.5 Aging Study 

There has been some concern that pyrolysis oil is not stable over time, especially in 

regard to formation of solid precipitates containing fixed carbon.  This test was created to 

assess whether or not ethanol mixtures with pyrolysis oil would have different stability 

performance than pure pyrolysis oil for the current tests.  A series of sample mixtures were 

prepared in 50 ml containers to undergo the aging test.  The test was carried out under 

elevated temperatures for a relatively short time of 30 minutes, in order to accelerate any 

aging phenomena so that the study could be completed in a timely manner while capturing 

possible conditions during storage and delivery of the fuel to the combustion chamber.  To 

help validate this method, several different temperatures were selected including one set 

‘aged’ at room temperature for a relative measure.  These sets were aged by placing the 

sealed sample tubes into a large beaker of water on a hot plate as shown in Figure 3.  The 

temperature of the water was controlled by a PID controller cycling the hot plate on and off 

based on a thermocouple suspended by a ring stand to keep it from touching the bottom or 

sides of the beaker.  It was assumed that over the course of each test, the samples quickly 

reached the water temperature do to the intimate thermal contact between the water and the 

tubes. After aging, the samples were sent to the TGA to be analyzed, with fixed carbon being 

of particular interest as a product of aging. 
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Figure 3 Pyrolysis oil mixed with ethanol in aging setup. 

   

 

3.3 Nozzle Spray Testing 

 

 One of the biggest challenges of utilizing pyrolysis oil is producing an adequate spray 

comparable to typical fuel oil sprays.  This portion of the study is intended to further 

investigate the effects of different spray nozzles and nozzle operating parameters and to 

study spray phenomena of pyrolysis oil mixtures. A spray chamber with optical access not 

intended for combustion was constructed to study the sprays.  Surrogate fuels also were 
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examined to see if properties of pyrolysis oil could be matched by other liquids to help 

isolate properties of pyrolysis oil that are particularly important to sprays. 

 

3.3.1 Spray Chamber 

 To perform optical diagnostics on the sprays, an optically accessible chamber was 

created.  These measurements were not possible inside the combustion chamber because the 

walls of the chamber are opaque except for a few small sight glass windows that are often 

obscured by condensation or contaminated with particulates during combustion tests. Optical 

access ports were added by cutting holes in the chamber where needed.  As pyrolysis oil 

mixtures with the current sprays could not sustain combustion without a continuous pilot 

flame, it was determine that the chamber could consist of an inexpensive, polyethylene open 

container.   

 

3.3.2 Mist Handling System 

 Sprays created by nozzles will tend to spread to outside their intended areas if 

measures are not taken to prevent this. This is a particular problem with optics near the open 

ports of the spray chamber.  To prevent droplets from leaving the optical access ports of the 

chamber, a mist handling system was employed.  This system utilized a fan, a filter element, 

a settling chamber, and some ducting to create a very slight negative pressure inside the spray 

chamber.  Droplet laden air in the spray chamber travels through a flexible duct into a large 

settling chamber where some droplets settle.  Air is pulled out of this chamber through a 

filter element by the fan and directed out of the facility through a spark-resistant exhaust 
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hood.  The filter is to help remove droplets that may not have settled to reduce fouling in the 

hood and contamination of the lab by any gas that escapes from the exhaust hood system.  

 

3.3.3 Shadowgraphy Setup 

To obtain useful images of the spray, the image must be frozen in time to resolve 

droplets and structures.  This was done by using a diffuse strobe backlight and a long 

exposure on a digital camera.  An etched glass diffuser was placed behind one of the optical 

ports, as shown in  

Figure 4, with the strobe light placed to illuminate the diffuser to create the pulsed 

backlight.  A translucent ruler was placed inside the chamber through another port and 

illuminated with a white paper diffuser to provide a scale.  The camera was held on the 

opposite side of the chamber so that the spray and nozzle were illuminated by the backlight 

as shown in Figure 5.  The nozzle and camera were adjusted to show just the tip of the nozzle 

to maximize the amount of the spray visible in the pictures.  The strobe was set to 2 Hz and 

the camera shutter was set to 0.35 s exposure to avoid the possibility of double exposures.  

Many pictures were taken and occasionally the 0.35 s shutter would fall completely between 

two strobe flashes, resulting in a black picture that was discarded.  This was not a problem as 

most of the pictures captured a single flash, so there were enough images for the study.   
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Figure 4: Side view of setup for Shadowgraphy. 
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Figure 5: Spray test setup for shadowgraphy. 

 

 

3.3.4 PDPA Setup 

 The TSI Phase Doppler Particle Analyzer (PDPA) is an optical point measurement 

system capable of measuring particle size and velocity in a variety of aerosols using a 

measurement technique known as Phase Doppler Interferometry.  The instrument uses a laser 

source and a detector.  The laser source focuses 4 beams onto a very small measurement 

volume, which is located within the spray.  Only 2 beams are needed to measure droplet size 

and velocity in one component direction based on scattering pattern created by droplets 

passing through light and dark regions within the fringe patterned created at the crossing 

point of the 2 beams. The use of 4 beams allows velocity measurements in two component 

directions as well as redundant droplet size measurements using the size of the fringe patterns 

created by each pair of beams and projected from the droplets to the detector.  The detector is 

Nozzle 

Scale 

Diffuser 

Strobe 

Translation Stage 

Camera 



www.manaraa.com

61 

 

placed at a location 150 degrees from the source to optimize the amount of light reflected 

from the measurement volume by droplets that pass through.  The size range that can be 

measured using this system is ~1 m to ~200 m.  Round holes in the spray chamber match 

the lenses on the source and detector to provide optical access to the spray near the center of 

the chamber.  The nozzle can be translated to probe different parts of the spray without 

disturbing the alignment of the PDPA system.  
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CHAPTER 4. RESULTS 

 

4.1 Fuel Property Tests 

 

 Several properties of fuels can affect atomization and combustion performance.  Tests 

were conducted to measure properties including viscosity, higher heating value (HHV), Ried 

vapor pressure, fuel stability, and thermo-gravimetric analysis (TGA).  The viscosity results 

showed that viscosity is reduced from 165 cP to near 40 cP by mixing only 20% ethanol by 

volume with pyrolysis oil.  The HHV testing of samples of various mixtures of pyrolysis oil 

and ethanol showed a slight increase in energy content with the addition of ethanol, as 

predicted by direct replacement.  TGA of mixtures showed an increase in moisture readings, 

due to the fact that ethanol evaporates in a similar temperature regime to water.  There is a 

corresponding change in quantity of volatiles, ash, and fixed carbon proportional to the 

amount of pyrolysis oil in each sample. The Ried vapor pressure test is a test to measure the 

volatility of a fuel, but is normally used for refined fuels such as gasoline.  For the mixtures 

tested, the final readings were the same as the value of the lightest component of the mixture. 

Full fuel properties and aging test results can be found in Appendix C.   

 

4.1.1Viscosity Results 

 Viscosity is one of the important parameters for fuel spray nozzle performance, 

particularly for pressure atomizing nozzles.  The viscosity tests were selected to quantify the 

viscosity effects of mixing ethanol into pyrolysis oil, as well as measuring viscosity of some 
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other liquids that can be used as more readily available surrogate fluids for spray testing. 

Figure 6 shows the results for mixtures of ethanol and pyrolysis oil, as well as viscosity 

results for canola oil and soybean oil, which are inexpensive fluids widely available for spray 

testing.   

 

Figure 6: Viscosity of fuels at 30°C. 

A temperature of 30°C was selected because this is a representative temperature for 

fuel that is sprayed without heat addition other than viscous effects from the pumping system 

and heat conduction from the flame.  An exponential fit follows the trend of viscosity with 

respect to percent ethanol content.  Points at 17.5% and 22.5% ethanol do not follow the 

trend as closely, but this is likely due to variation in sample composition, despite careful 

mixing intended to produce consistent samples.  This result shows a significant decrease in 
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viscosity with the addition of only 20% ethanol.  Indeed, in subsequent combustion tests, this 

allowed delivery of the pyrolysis oil without fuel preheating and instantaneous start-up of the 

boiler with a 20% ethanol mixture, which is a substantial benefit operationally.  It is desirable 

to have as much pyrolysis oil in the mixture as possible while maintaining acceptable fuel 

properties to minimize the amount of other resources needed to make pyrolysis oil feasible.  

In this study, only a single shear rate was used.  This does not provide information about 

whether or not the fluid behaves as a Newtonian fluid for very high and very low shear rates.  

This has been investigated by others who have found that pyrolysis oil does not behave as a 

Newtonian fluid in some circumstances.
47

 

Also apparent in Fig. 6 is that the similar viscosity of soybean and canola oil with 

20% ethanol in pyrolysis oil allows them to be utilized as surrogate oils for extracting 

qualitative features of the ethanol/pyrolysis-oil mixtures for a variety of operating conditions.  

 

4.2 Spray Test Results 

 

Spray testing was carried out in the spray chamber separate from the combustor so 

that optical techniques could be used to investigate the sprays produced using pressure 

atomized and air atomized nozzles for both actual fuels and surrogate fuels.  This is an 

important step in understanding fuel droplet atomization and nozzle performance and can 

yield insight into combustion performance. 
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4.2.1 Shadowgraphy Results 

Shadowgraphy was used to visualize sprays of interest for the study.  While it is 

difficult to extract meaningful quantitative information from these images, it is possible to 

make qualitative observations about nozzle performance that are relevant for understanding 

differences in combustion behavior. 

 

4.2.1.1Air atomized nozzle performance 

Water was used to examine the air atomized nozzle’s performance with a low 

viscosity fluid and the possible effects of varying atomizing pressure.   

  

Figure 7: Water spray with atomizing air at 25 psi (left) and 35 psi (right). 

The images shown in Figure 7 compare two sprays of water, representing typical 

pressure conditions for this nozzle.  Because atomization pressure is high enough in both 

conditions, there are relatively few large droplets or ligament structures in either spray, 

especially at downstream locations.  
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Canola oil was used as a surrogate fuel with similar viscosity to 20% ethanol 

pyrolysis oil mixture, as is shown in the viscosity measurement section.  Canola oil also has a 

similar surface tension to pyrolysis oil,
47

 making this a more useful surrogate. 

  

Figure 8: Canola oil spray with atomizing air at 25 psi (left) and 35 psi (right). 

The canola oil sprays shown in Figure 8 show two sprays at less ideal conditions.  

The spray with 25 psi atomization air shows a higher concentration of larger droplets and 

structures, which will lead to problems vaporizing in a combustion spray.  With atomization 

air pressure increased to 35psi, this non-ideal behavior appears to be significantly reduced.  

This indicates that there is potential for a change in spray behavior to occur within this 

pressure range.  It can be reasonably expected that these results may also apply at a similar 

pressure regime to the ethanol pyrolysis oil mixture because of the similar surface tension 

and viscosity. 
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Figure 9: 20% ethanol in pyrolysis oil mixture with atomizing air at 25 psi (left) and 35 

psi (right). 

 

When the 20% ethanol in pyrolysis oil mixture is used under the same conditions as 

the two canola oil sprays, the trends are similar.  Figure 9 shows the images of a poor spray 

of pyrolysis oil at 25 psi atomizing air, exhibiting large droplets and long ligaments still 

intact in the spray.  These are highly undesirable because most of the fuel is contained in a 

few droplets with very low surface area to permit vaporization.  The spray at 35 psi 

atomization air shows a well-atomized droplet field and almost no surviving ligaments. 

Certainly, the large structures seen in the 25 psi atomizing air spray are mostly eliminated at 

35 psi.  It is interesting to note that the effect of increasing atomizing air from 25 psi to 35 psi 

is much more pronounced for the 20% ethanol in pyrolysis oil mixture than for the canola oil, 

indicating that the combustion performance will be more sensitive to the atomizing air for 

pyrolysis oil, due perhaps to Non-Newtonian properties. However, the 20% ethanol in 

pyrolysis oil spray seems to have similar spray characteristics as canola oil at an atomizing 

air pressure of 35 psi.    
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4.2.1.2 Pressure atomizing nozzle performance 

Water is again used to examine the spray structures that develop using a low viscosity 

fluid, this time for the 16 gph pressure atomizing simplex swirl nozzle at different 

atomization pressures. 

  

Figure 10: Pressure atomized water spray at 80 psi (left) and 100 psi (right). 

 

In the images in Figure 10, it can be seen that the ideal flow structures of the simplex 

swirl style nozzle are developed.  The hollow cone can be seen radiating from the nozzle 

orifice, then breaking into fine droplets at the edge.  This is an example of a properly 

functioning nozzle operating in a typical flow regime. 
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Figure 11: Pressure atomized canola oil spray at 80 psi (left) and 100 psi (right). 

 

Canola oil is again used as a surrogate fuel for a 20% ethanol in pyrolysis oil mixture, 

but this time in a pressure atomizing nozzle.  The two sprays shown in Figure 11 exhibit 

sprays from simplex swirl nozzles operating at too low of a Weber Number.  The flow 

pattern was not very stable for these measurements, so the differences observed between 

these two particular spray images should not be used to draw conclusions.  What can be seen 

in both is that the flow structure is properly developed within the nozzle in order to produce a 

hollow cone, but the inertial effects are not strong enough to overcome surface tension 

effects as the fluid travels away from the nozzle orifice.  This results in inconsistent breakup 

that causes a wide distribution of droplet sizes, including many large droplets which are not 

desirable in a combustion spray. 
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Figure 12: Pressure atomized spray of 20% ethanol in pyrolysis oil at 100psi. 

 

When the 20% ethanol in pyrolysis oil mixture is tested under the same conditions as 

the canola oil in the pressure atomizing nozzle, the spray is very different.  Figure 12 shows 

the spray from the pressure atomized nozzle, but the ideal structure of the simplex swirl 

nozzle is clearly not developed.  It is known that simplex swirl nozzles operating at very low 

Weber Numbers can sometimes exhibit a simple jet spray because there is not sufficient 

centripetal acceleration to develop the hollow cylinder structure within the nozzle.  This is 

not expected here because the Weber Number should not be significantly different than that 

of canola oil, which was at least able to develop the hollow cone flow structure within the 

nozzle.  Again, we speculate that non-Newtonian properties of pyrolysis oil could be leading 

to these differences. 
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4.2.1.3 Shadowgraphy results summary 

The results for air atomized nozzles indicate that there can be significant changes in 

spray structure caused by a change in atomization air pressure.  It is expected that there 

should be a corresponding change in combustion performance due to the concentration of 

larger droplets and ligaments in the spray at lower atomization pressures.   

The results of the pressure atomized nozzle tests indicate that good atomization will 

not be achieved at pressures the experimental rig is capable of delivering, which is up to 

about 120 psi.  Poor combustion performance should be expected from the 20% ethanol in 

pyrolysis oil mixtures when used in combustion due to the extremely large droplets and the 

failure to spread to an appropriate spray angle for the combustor geometry.  These effects 

will both lead to poor mixing between fuel and air since surface area is low, and the droplets 

will only interact with the center section of the total airflow in the combustion chamber. 

Both air atomized and pressure atomized tests show that canola oil is not a perfect 

spray analog for this sample of 20% ethanol in pyrolysis oil mixture.  The 25 psi atomization 

air cases show that pyrolysis oil has a higher propensity to retain ligament structures and 

large droplets under the same conditions.  However, at 35 psi atomization air, the canola oil 

appears as a reasonable surrogate. The pressure atomized test shows that pyrolysis oil 

interferes with the development of the hollow cone flow pattern necessary for the simplex 

swirl nozzles to properly function.  This is unexpected because the parameters such as 

viscosity and surface tension that normally control these flow phenomena are thought to be 

fairly close between canola oil and the 20% ethanol in pyrolysis oil mixture.   
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4.2.2 PDPA Results 

The PDPA was only used for the air atomized nozzle, because the pressure atomized 

nozzles were not able to produce acceptable sprays with either pyrolysis oil or canola oil, as 

shown by the shadowgraphy results.  Attempts were made to measure sprays with pyrolysis 

oil, but the opacity of the liquid interfered with data collection.  Instead, sprays of water and 

canola oil were measured.  Canola oil has similar viscosity to the mixture of 20% ethanol in 

pyrolysis oil and can be a reasonable surrogate liquid for spray testing.   The sample volume 

was placed 3” below the nozzle to obtain a measurement that is representative of droplets 

entering the flame zone and avoiding droplets that are still undergoing primary droplet 

breakup.  Each run consists of measurements at a single point for 60 seconds, or until 5000 

droplets have been measured in the sample volume.  The time limit is imposed to prevent 

unnecessary expenditure of fluid for measurements with fewer, larger droplets.   

Four sets of runs were collected with varying atomization air pressure.  For both 

water and canola oil a set of runs was collected at the center of the spray and a set was 

collected near the edge of the spray cone.  For the center measurement, the nozzle was not 

moved, but for the edge of cone measurements the nozzle was moved to keep the edge of the 

spray cone in the measurement volume.  This adjustment was necessary for each run because 

the spray angle changes slightly with changes in flow conditions.  

SMD is one of the most important parameters to combustion performance of liquid 

fuels.  Sprays with large droplets, or high SMD, will have droplets which persist for a long 

duration, creating locally rich areas and increasing the residence time.  These large droplets 

can contribute to increased pollutant formation and decreased flame stability.  Ideal sprays 

will show smaller SMD values. 
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Table 1: PDPA results for SMD vs. atomization air pressure. 

Edge of Cone Measurements 

 

Center of Spray Measurements 

Fluid 

Atomization 

Pressure (psi) 

SMD 

(μm) 

 

Fluid 

Atomization 

Pressure(psi) 

SMD 

(μm) 

Water 35 110.7 

 

Water 35 38.39 

Water 30 112.94 

 

Water 30 42.69 

Water 25 120.7 

 

Water 25 45.79 

Water 20 140.64 

 

Water 20 46.07 

Water 15 154.14 

 

Water 15 73.04 

Water 10 164.87 

 

Water 10 96.49 

Canola Oil 35 136.92 

 

Canola Oil 40 39.82 

Canola Oil 30 137.84 

 

Canola Oil 35 39.94 

Canola Oil 25 155.36 

 

Canola Oil 30 81.6 

Canola Oil 20 157.38 

 

Canola Oil 25 101.75 

Canola Oil 15 164.04 

 

Canola Oil 20 113.37 

    

Canola Oil 15 140.43 

    

Canola Oil 10 177.05 
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Figure 13: PDPA results for SMD vs. atomization air pressure with curve fits. 

 

The results from the PDPA indicate that increasing atomization air pressure decreases 

the SMD.  As atomization air pressure rises, this tends to have less of an effect.  This trend is 

shown clearly with water and with canola oil at a higher pressure.  This means that less 

viscous fluids can be atomized with less pressure, while more viscous fluids require a higher 

pressure to achieve optimal spray conditions.  Because of this, it should be expected that 

there is a reduction in emissions associated with increasing atomization air pressure from 25 

psi to 35 psi for the 20% ethanol in pyrolysis oil mixture.   

 Current literature on air atomized nozzles indicates that the SMD should be inversely 

proportional to the velocity of the atomizing air at the interface between liquid and atomizing 

air.
15

  This is essentially just the velocity of the air, since the fuel enters at relatively low 
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velocity.  The air velocity should be proportional to a square root function of pressure drop 

across the air passages of the nozzle.  It should be expected that a power curve should 

correlate SMD to the -0.5 power of atomizing air pressure.  Figure 13 shows that the SMD 

does not follow these trends very well.  It can be observed that the very high atomization 

pressures and very low atomization pressures follow the trends the least.  This is probably 

due to phenomena outside of the initial air assist breakup mechanism, which causes the 

nozzle to act differently as a system than predicted by a simple fundamental analysis, 

especially at conditions beyond the nozzle’s intended operating range.  

 

4.3 Combustion Test Results 

 

Combustion tests in the boiler were carried out to study the effects of various 

parameters on exhaust emissions while maintaining flame stability.  The tests focused 

primarily on parameters that affect fuel droplet atomization such as nozzle selection and 

operating condition, but global parameters such as overall λ value were also investigated.  

Several mixtures of pyrolysis oil and ethanol were tested to determine the effects of ethanol, 

but 20% ethanol was a primary focus because of the large drop in viscosity from pure 

pyrolysis oil to 20% ethanol mixture, with higher ethanol concentrations having less dramatic 

reductions in viscosity. Both air atomized and pressure atomized nozzles were investigated, 

along with substitution with the modified swirler.  Preliminary results showed that a wider 

range of stable conditions could be examined when pyrolysis oil is co-fired with natural gas 

and a natural gas pilot light.  It is likely that liquid pyrolysis oil would be implemented as a 

base loading fuel for these types of applications, with natural gas used in a co-firing mode to 
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accommodate peak demands.  This allows designers to avoid the complexities associated 

with varying the liquid fuel flow with load, which is further complicated by the inconsistent 

liquid properties of pyrolysis oil.  Most of the tests used in this study have a constant 3 

SCFM natural gas co-fire along with a natural gas pilot flame, which accounts for about 17% 

of the energy contribution.  The combined heat rate is around 260 kW, which is just below 

half of the maximum output of the boiler, the base load condition.    

 

4.2.1 Fuel Oil and Natural Gas Baselines 

Prior to boiler testing, personnel from the company that services the boilers at the 

Capitol Complex of the State of Iowa inspected the boiler for safety and to ensure proper 

operation.  The latter was accomplished, in part, by ensuring that CO emissions were 

minimized.  Baseline fuel oil tests were then conducted to establish the typical levels of PM 

that are present for boilers in current use.  Typically #2 fuel oil boilers utilize pressure 

atomized nozzles due to the simplicity and cost of the system over air atomized nozzles.  Air 

atomized nozzles were also tested with fuel oil to observe any changes over pressure 

atomizing nozzles.  Natural gas conditions were also sampled, again for comparison of PM 

emissions.  The results of measurements are shown in Table 2. 
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Table 2: Fuel oil and natural gas baseline runs. 

Fuel Nozzle Type λ 

PM 

mg/m
3
 

Fuel oil Pressure 1 524.83 

Fuel oil Pressure 1.32 7.23 

Fuel oil Pressure 1.42 1.80 

Fuel oil Pressure 1.5 0.70 

Fuel oil Pressure 1.58 0.41 

Fuel oil Air (25 psi) 1.36 70.51 

Fuel oil Air (25 psi) 1.5 4.13 

Fuel oil Air (25 psi) 1.58 0.90 

Natural Gas N/A 1.37 0.19 

Natural Gas N/A 1.38 0.09 

 

 The results in 

Table 2 highlighted in green represent typical operating conditions for properly adjusted #2 

fuel oil and natural gas boilers.  Off of normal operating conditions, soot output can reach 

very high levels. Soot levels for fuel oil are very dependent on λ value, with leaner conditions 

being more ideal, at the cost of moving more air through the boiler for a given heat rate.  

Contrary to expectations, there is not a dramatic decrease when switching to the air atomized 

nozzle.  This may be caused by the fact that the pressure nozzle is a hollow cone spray, while 

the air atomized nozzle is a solid cone spray, leaving a more locally rich area in the center of 

the flow.  With the nozzles normally used for this type of system, typical PM concentrations 

for fuel oil flames in this boiler are around 0.4-0.7 mg/m
3
.  Natural gas is capable of attaining 

even lower soot levels due to the lower sooting propensity of the lighter, lower carbon 

content, natural gas species, but either level is considered acceptable for typical boiler 

operation. 
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4.2.2 Runs without Natural Gas Co-fire 

 Flame stability was impaired for conditions without natural gas co-fire.  As a result, 

very few of these runs were conducted, and a pilot light was still used.  The 20% ethanol in 

pyrolysis oil mixture was unable to sustain stable combustion without the slight natural gas 

co-fire, even under ideal conditions.  With the higher concentration of ethanol, other fuel 

mixtures were capable of sustaining a flame at least long enough to record data without the 

use of the co-fire.  These results are shown in Table 33, again for cases without natural gas 

co-fire.  All other data presented subsequently to Table 3 all used a fixed natural gas co-fire 

at a rate of 3 SCFM to help stabilize the flame and ensure repeatable flame conditions for a 

wider range of λ and atomizing conditions. 

Table 3: Emissions for pyrolysis oil/ethanol mixtures without co-fire with natural gas. 

Higher levels of emissions are highlighted.  

λ Fuel 

Atomization 

Pressure 

PM 

mg/m
3
 CO ppm NO ppm 

1.5 

70/30 

35 psi 

0.27 73 136 

0.29 79 146 

0.19 102 147 

60/40 

0.31 100 136 

0.13 94 137 

0.19 83 138 

 

 These data show the ability to achieve low PM with pyrolysis oil mixtures even 

without co-firing with natural gas.  The CO emissions are similar for both mixtures with 30% 

and 40% ethanol in pyrolysis oil and are close to same levels seen with the natural gas co-

fire, indicating that the natural gas does not inherently affect the CO emissions so long as the 

flames are stable.  NO is slightly higher for these runs than for runs with the co-fire, which 

may be due to the fact that more pyrolysis oil mixture is used in these runs to keep the same 

heat rate and λ value without natural gas. 
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4.2.3 Pressure Atomizing Nozzle Runs 

 These runs were intended to test the capabilities of traditional pressure atomized 

nozzles of two different flow rates as compared to a run with the air atomized nozzle for the 

case of 20% ethanol in pyrolysis oil.  Very few of these conditions were run due to the high 

pollutant output and poor flame stability.  It was also challenging to control λ, since fuel flow 

rate is a function of fuel pressure.  As a result, one very rich condition was run 

unintentionally, and the results are included in Table 4 below. 

Table 4: Emissions for 20% ethanol in pyrolysis mixtures using pressure atomized vs. 

air atomized. Higher levels of emissions are highlighted. 

λ Nozzle Pressure 
PM 

mg/m
3
 

CO ppm NO ppm HC ppm 

1.5 

Air 35 psi 
0.58 120 109 0 

0.90 166 113 0 

 

16 gph rated 

pressure 

atomizing 

nozzle 

80 psi 

83.92 
 

46 
 

64.75 
 

54 
 

78.94 
 

52 
 

1.25 95 psi 

308.81 724 96 723 

240.88 684 97 852 

266.51 >2000 92 869 

1.5 

9.5 gph rated 

pressure  

atomizing 

nozzle  

80 psi 

35.29 1234 82 0 

42.24 1472 80 0 

40.16 1349 87 0 

100 psi 

100.85 >2000 76 932 

107.34 >2000 76 236 

121.78 >2000 62 134 

 

 From Table 4, it can be observed that pressure atomized nozzles for the 20% ethanol 

in pyrolysis oil produces substantial incomplete combustion products including PM, HC and 

CO, each at unacceptable levels.  It is interesting to note that NO is slightly lower for 

pressure atomized nozzle conditions, but this does not outweigh the emission levels for the 
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other pollutants.  One would expect poor pressure atomized combustion results from the 20% 

ethanol in pyrolysis oil mixture, correlating to the poor atomization observed in the spray 

testing.    

 

4.2.4 Fuel Comparison 

 In this section, fuels are compared at a series of overall λ values.  This is to form a 

basis of comparison between existing #2 fuel oil emission levels and the pyrolysis oil ethanol 

mixtures studied in this work.  Overall λ value has a strong impact on fuel oil emissions, so it 

is important to study these fuels across a range of possible λ values.  A finer control over λ is 

attainable with fuel oil than with pyrolysis oil mixtures due to drift in the fuel flow through 

the controlling needle valve, so more data points are available for fuel oil.  For this set of 

data, the air atomized nozzle was used and the atomizing air pressure was set to 35 psi in 

order to provide constant conditions across the array of tests. Figure 144 shows two side by 

side images of a 20% ethanol in pyrolysis oil mixture flame and a similar fuel oil flame.   

  

Figure 14 Pyrolysis oil flame with 3 SCFM natural gas co-burn (left), and fuel oil flame 

with 3 SCFM natural gas co-burn (right). 
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In Figure 14 it can be seen that there is a different flame structure between fuel oil 

and pyrolysis oil.  This is consistent across many conditions.  It is observed that the pyrolysis 

oil flame is more uniformly distributed in the combustion chamber and contains many 

distinct “sparklers” or particles of fuel traveling about the combustion chamber as they burn. 

Table 5: Comparison of emissions for #2 fuel oil and different mixture of pyrolysis oil 

and ethanol. Higher levels of emissions are highlighted. 

Atomizing 

Pressure 
λ Fuel 

PM 

mg/m
3
 

CO ppm NO ppm 

35 psi 

 

1.2 #2 fuel oil 38.89 1743 34 

1.3 

#2 fuel oil 2.11 89 43 

80/20 Bio 0.58 120 109 

60/40 Bio 0.04 45 97 

1.4 #2 fuel oil 0.01 48 61 

1.5 

#2 fuel oil 0.07 117 62 

80/20 Bio 0.45 49 131 

60/40 Bio 0.05 95 102 

1.6 #2 fuel oil 0.00 187 69 

1.7 

#2 fuel oil 0.11 285 69 

80/20 Bio 0.55 108 121 

60/40 Bio 0.24 271 96 

1.8 #2 fuel oil 0.08 459 66 

 

 The results shown in Table 5 reflect a potential for pyrolysis oil mixtures to have 

comparable emissions with #2 fuel oil.  Fuel oil reaches very high levels of PM under 

conditions that are more fuel rich.  It is observed that pyrolysis oil conditions offer lower PM 

than the fuel oil condition at λ = 1.3.  Although the #2 fuel oil emissions for air atomized 

nozzles are lower for λ = 1.4 – 1.8 than for pressure atomized nozzles, likely due to fine 

atomization tat the 35 psi atomization air pressure, more typical fuel oil PM levels from 

pressure atomized nozzles are around 0.4 – 0.7 mg/m
3
, as shown previously in Table 2.  

Hence, the PM levels reported in Table 5 are acceptable for pyrolysis oil mixtures from λ = 
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1.3 – 1.7.  As pyrolysis oil has a narrower range of flammability, this may prevent 

combustion in regions where too little oxidizer is present and help to limit soot production.  

This has the effect of decreasing soot produced at locally rich sites within the flame 

compared to fuel oil, reducing overall PM levels for these conditions.  CO emissions are 

lower for pyrolysis oil mixtures than for fuel oil in most cases.  Each fuel seems to have a 

local minimum for CO emissions which can be targeted with subsequent optimization tests.  

NO is higher for pyrolysis oil than for fuel oil for most conditions, but still within a 

reasonable range. Nonetheless, this is may be a target for future optimization studies.  

 

4.2.5 Test Matrix for Ethanol Concentration and Atomization Pressure 

 Table 6 focuses on atomization air pressure effects for three different ethanol 

concentrations of ethanol pyrolysis oil mixtures in order to determine optimum conditions for 

each ethanol level.  Ethanol concentration is suspected to have an effect on atomization 

through its viscosity effects, in addition to atomization air pressure.  The λ value is fixed at 

1.5 for these conditions to focus solely on atomization conditions.  Triplicates were not run 

for gaseous emissions for the 30% ethanol pyrolysis oil mixture in order to save resources for 

more focused tests. 
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Table 6: Emissions data with varying atomization pressure and ethanol content in 

pyrolysis oil. Higher levels of emissions are highlighted. 

λ Fuel 

Atomizing 

Pressure 

PM 

mg/m^3 

CO 

ppm 

NO 

ppm 

HC 

ppm 

1.5 

80/20 

Pyrolysis 

oil 

20 psi 

0.16 86 124 42 

0.24 82 117 45 

0.32 73 123 48 

25 psi 

0.10 48 134 0 

0.20 46 133 0 

0.24 48 133 0 

30 psi 

0.11 54 129 0 

0.16 50 130 0 

0.16 48 133 0 

35 psi 

0.29 42 136 0 

0.28 41 136 0 

0.34 37 134 0 

40 psi 

0.25 60 130 0 

0.11 53 129 0 

0.02 58 130 0 

70/30 

Pyrolysis 

oil 

20 psi 

0.28 76 122 0 

0.13 

   0.23 

   

25 psi 

0.15 36 123 0 

0.08 

   0.04 

   

30 psi 

0.28 76 115 0 

0.26 

   0.21 

   

35 psi 

0.25 102 126 0 

0.28 

   0.31 

   

40 psi 

0.20 80 128 0 

0.31 

   0.21 

   

60/40 

Pyrolysis 

oil 

20 psi 

0.29 64 95 0 

0.34 61 97 0 

0.25 69 94 0 

25 psi 

0.19 75 107 0 

0.22 63 101 0 

0.22 65 104 0 

30 psi 

0.30 69 107 0 

0.39 58 105 0 

0.09 59 105 0 

35 psi 

0.08 60 109 0 

0.14 54 109 0 

0.14 66 106 0 

40 psi 

0.21 67 100 0 

0.21 80 102 0 

0.24 114 108 0 
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 It can be observed that PM is below 0.40 mg/m
3
 for all runs in this chart, which is 

comparable to fuel oil emission levels for the baseline runs.  It is interesting to note that there 

is not a large decrease in PM with increasing atomizing air pressure, as might be expected 

from the change in spray behavior observed in spray testing.  This indicates that increasing 

atomizing air pressure is only useful up to a certain point, and going beyond this has little 

impact on combustion performance.  The variance between PM measurements for these 

points is substantial compared to the low levels of PM that are measured.  Variability shown 

between these conditions is mostly within the measurement noise. 

A minimum can be seen in CO at 35 psi for both 20% and 40% ethanol pyrolysis oil 

mixtures.  The changes between conditions are larger than the noise within each run, 

indicating that these are real results and not noise.  It is also interesting that for these two 

sets, both low CO and PM are attainable from 25 psi to 35 psi atomization indicating that 

there is not a strong effect from atomizing pressure, so long as there is enough atomizing 

pressure to properly atomize the fuel.  The minima in CO is not found in the 30% mixture, 

but there is only a single measurement point for that condition, so it may not have been as 

accurate as for the other two fuels, and any trend is likely drowned out in the measurement 

noise. 

There are detectable emissions of HCs only for low atomization pressures of the 20% 

ethanol pyrolysis oil mixture.  This indicates poor combustion, which is likely the reason that 

NO is also low for this run.  This agrees with spray testing that indicates a deterioration of 

spray performance below 25 psi atomization for 20% ethanol in pyrolysis oil mixtures.  The 

higher ethanol mixtures are likely immune to this phenomenon until a lower pressure level 

due to reduced viscosity caused by the ethanol.   
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NO is not strongly affected by atomization air, but there is a slight decrease with 

increasing ethanol content.  This is consistent with NO readings in Table 5.  This is likely 

because ethanol contains no fuel bound nitrogen.  By replacing pyrolysis oil with ethanol, 

less fuel bound nitrogen is available to be oxidized. 

 

4.2.6 Effects of λ and Atomization Pressure 

 This table employs a constant fuel composition, but varies λ at two different 

atomization pressure levels, to study the effect of λ for each atomizing condition.  Two runs 

were taken at each condition on separate days, which serves as a measure of reproducibility 

for the measurements. 

Table 7: Emissions for 20% ethanol in pyrolysis oil while varying λ for two different 

atomization pressures. Higher levels of emissions are highlighted. 

λ 

Atomizing 

Pressure PM mg/m^3 CO ppm NO ppm 

1.3 

25 
0.42 135 102 

0.50 167 107 

35 
0.58 120 109 

0.90 166 113 

1.5 

25 
0.29 50 120 

0.41 53 119 

35 
0.45 49 131 

0.55 42 135 

1.7 

25 
0.28 109 119 

0.43 101 111 

35 
0.55 108 121 

0.44 64 133 

 

 This dataset shows little effect from atomization pressure.  A strong minimum of CO 

is shown at λ=1.5 for both atomization pressures.  With the exception of one point, all of 
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these conditions have PM under 0.60 mg/m
3
 which is in the same range as the baseline runs 

for #2 fuel oil.  It is worth noting that for the rich condition NO is lower than for the other 

two conditions at both atomization levels, while CO is higher.  This tends to indicate lower 

flame temperatures or combustion with less oxygen content available for NO production, 

possibly caused by a stronger tendency to have locally rich areas in the flame.   

 

4.2.7 Air Swirler Comparison  

 This dataset examines a small range of conditions for both the factory and custom air 

swirlers.  The results from Table 8 and Figure 15 show that there is very little difference 

caused by the swirler at any conditions.  In fact, the custom swirler, which has a higher 

effective flow area, may even slightly worsen gaseous emissions on average.  This is slightly 

surprising since previous studies in a smaller scale combustor (~20 kW) showed that this 

type of design modification significantly increased flame stability and reduced emissions.
47

  

Perhaps for a larger boiler of this type, there is less sensitivity due to more significant heat 

release per unit surface area of the flame zone, or it may also be that the baseline flow of 

natural gas eliminated the advantages of the design modification. Although there are many 

factors in the air intake that may affect combustion performance, it was not possible in this 

study to extract specific information about the effects of air swirl and effective flow area for 

the two available swirlers. However, it is possible that some combination of swirler features 

could improve combustion performance.  Since there was no substantial change, this variable 

was not investigated further.  
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Table 8: Comparison of two different swirlers for combustion of 20% ethanol in 

pyrolysis oil. Higher levels of emissions are highlighted. 

Swirler 

Atomizing 

Pressure 

PM 

mg/m
3
 

CO 

ppm 

NO 

ppm Swirler 

Atomizing 

Pressure 

PM 

mg/m
3
 CO ppm 

NO 

ppm 

Factory 

20 

0.16 86 124 

Custom 

20 

0.32 133 119 

0.24 82 117 0.28 115 121 

0.32 73 123 0.32 112 123 

25 

0.1 48 134 

25 

0.28 68 128 

0.2 46 133 0.25 66 125 

0.24 48 133 0.09 66 126 

30 

0.11 54 129 

30 

0.14 52 133 

0.16 50 130 0.11 52 137 

0.16 48 133 0.16 49 133 

35 

0.29 42 136 

35 

0.08 43 140 

0.28 41 136 0.15 44 139 

0.34 37 134 0.24 47 138 

40 

0.25 60 130 

40 

0.25 42 150 

0.11 53 129 0.23 42 150 

0.02 58 130 0.13 40 150 

 

 

 

Figure 15: Average gaseous emissions comparison for two different air swirlers for 

combustion of 20% ethanol in pyrolysis oil. 
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CHAPTER 5. SUMMARY AND FUTURE WORK 

 

 A building heating boiler has been modified for testing and optimizing combustion 

properties of pyrolysis oil and ethanol mixtures under a variety of conditions. This boiler was 

able to sustain a pyrolysis oil flame with emissions near those of a typical fuel oil flame, but 

required a small baseline level of natural gas for ethanol concentrations of 20% or lower.  

This demonstrates that it is possible to use pyrolysis oil to displace substantial amounts of 

fossil fuel combustion for boiler applications. 

Pyrolysis oil mixtures with ethanol were characterized for several properties, most 

notably for viscosity, which can have a major effect on spray performance.  A thorough set of 

samples was tested and it was determined that a large drop in viscosity occurred between 0% 

and 20% ethanol, with less viscosity change at higher ethanol levels. This allowed operation 

with pyrolysis oil without fuel or boiler preheating, a key advantage for on-demand boiler 

operation.  Hence the range of tests included ethanol concentrations of 20% to 40% for 

comparison of pollutant emissions, with the primary goal of maximizing the pyrolysis oil 

fraction in the mixtures.   

 Pressure atomized nozzles were compared with air atomized nozzles for their 

performance with pyrolysis oil mixtures using both optical techniques for cold spray 

characteristics and for combustion tests.  Air atomized nozzles were found to be much more 

effective at atomizing pyrolysis oil than pressure atomized nozzles.  Spray imaging shows 

that pressure atomized nozzles cannot properly develop the delicate exit flow patterns needed 

to effectively atomize the ethanol/pyrolysis oil mixtures.  This is reflected in combustion 
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performance in the form of high concentrations of incomplete combustion products including 

PM and HC for pressure atomized nozzles.   

Through spray imaging of air atomized nozzle sprays, it was found that atomizing 

airflow had an impact on atomization performance, especially for pyrolysis oil mixtures.  

Imaging results show ligaments and larger droplets leaving the nozzle in spray conditions 

with atomization pressure as low as 25 psi, compared to fully developed spray patterns at 35 

psi.  Surprisingly, however, combustion PM results were fairly similar for atomizing air 

pressures between 25 psi to 35 psi, although CO emissions appeared to be lower at 35 psi.  

The results of lower atomization pressures show slight changes in PM and CO, though still 

maintaining near acceptable levels.  This may be because ligaments visible in spray images 

end up breaking into smaller droplets before combustion.  As a result, these may not have 

severe effects on the combustion performance.  Hence air atomized nozzles appear to allow a 

wide range of operating pressures and certainly much lower emissions than pressure 

atomized nozzles.  

The effects of overall λ value on combustion performance were shown to be fairly 

important to flame stability and emissions levels.  Stable flames were easily attainable with 

natural gas co-fire with the ethanol/pyrolysis oil mixtures for λ values ranging from 1.3-1.7, 

with λ = 1.5 being optimal for flame stability and emissions performance.  PM emissions in 

this range appeared to be lower for air atomized pyrolysis oil mixtures than for pressure 

atomized #2 fuel oil at the same overall λ.  CO emissions were minimized for λ = 1.5 as well.  

For rich conditions, this increase in CO can be explained by reduced oxidizer availability.  

For lean conditions, the low combustion temperatures are less able to fully combust CO. 
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 A variety of concentrations of ethanol mixtures with pyrolysis oil were tested to 

determine the effects of ethanol content. NO levels were reduced by an amount expected for 

replacement of pyrolysis oil, while PM was not significantly affected, and CO levels were 

increased with increasing ethanol content.   These results are not favorable for increasing 

ethanol concentration beyond 20% ethanol, which was able to easily produce acceptable 

emission levels and flame stability under proper conditions.  

 Some studies have found that swirler characteristics can be important to swirl 

stabilized pyrolysis oil combustion.  A custom swirler was constructed and substituted with 

the factory installed swirler in order to investigate possible effects based on these prevous 

studies.  These tests showed no appreciable effect from the new swirler on emissions.  Hence, 

the custom swirler was not investigated further, although a full range of design parameters 

may still lead to some improvement and would be a possible area of future study. 

 For all operating conditions with PM emissions comparable to typical fuel oil 

conditions, HC emissions were below the detection limit of the instrument.  This shows that 

HC is not likely to pose a major issue for pyrolysis oil applications, so long as PM conditions 

are satisfied.  This, combined with low CO emissions, is indicative of high combustion 

efficiencies.  

 NO was not strongly affected by any variables other than the fraction of pyrolysis oil 

in the flame.  This suggests that the primary method of NO production is fuel bound nitrogen 

oxidation rather than thermal NOx or prompt NOx.  The low adiabatic flame temperatures 

due to the high moisture content and low energy content in pyrolysis oil will not tend to 

produce high levels of thermal and prompt NOx, providing further support for this claim.   
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 An off-the-shelf fuel pump was used for some of the conditions before pump 

performance began to degrade; thereafter, a laboratory fuel system was reintroduced relying 

on a pressurized tank.  The off-the-shelf fuel pump was selected because of compatibility 

with #6 fuel oil and had accommodations for atomizing air, but was by no means designed 

for pyrolysis oil use.  The pump was able to fulfill pumping needs for a few weeks before 

showing problems.  It is likely that with different materials choices, a pump could be 

designed specifically for use with pyrolysis oil, making use of stainless steel whetted 

components and pyrolysis-oil compatible seal materials, but this redesign was outside the 

scope of this project.  Hence, material compatibility in the fuel pumping system is a potential 

issue that still needs to be resolved before pyrolysis oil can attain widespread use. 

 Another possible issue is the tendency for pyrolysis oil to separate during long 

periods of storage.  In this experiment, the problem was partially resolved by vigorously 

mixing the fuel before taking samples and before use.  This is possible with current 

technologies, but is not commonplace in fuel systems.  In addition, the 20% ethanol acted as 

a solvent and effectively kept the pyrolysis oil components in solution. 

 The biggest hurdles to overcome with regard to the feasibility of pyrolysis oil are the 

fuel properties and combustion performance.  This investigation has demonstrated that these 

can be overcome with existing technologies by utilizing air atomized nozzles, mixing ethanol 

with the pyrolysis oil, filtering the fuel before use, and utilizing some natural gas baseline 

flow for lower ethanol concentrations.  This investigation shows that pyrolysis oil is a viable 

replacement for fuel and can displace natural gas to reduce overall carbon emissions in the 

energy supply of the future. 
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APPENDIX A. COMBUSTION AIR DAMPER CALIBRATION 

 

 The amount of combustion air is a crucial variable for these combustion conditions, 

since fuel flow is controlled by equivalence ratio.  This makes fuel flow rate proportional to 

air flow rate for a given condition.  It is useful to maintain the control system employed on 

actual boilers to ensure that conditions are accurately represented.  To maintain the factory 

mechanism for controlling air but to have the ability to control the airflow during the 

investigation, the linkage controlling the airflow damper was disconnected from the 

electronic actuator and connected to a fixed bracket.  Marks were put on the linkage so that it 

could be adjusted to provide varying levels of airflow.  In order to calibrate these markings, 

the airflow out of the exhaust was measured with a hot wire anemometer during cold tests of 

the fan with no combustion.  For each damper setting, five measurements were collected at 

different locations across the exhaust tube and were averaged to determine a flow rate for 

that setting.  The results of this test are shown in Figure 16. 

 

Figure 16: Air flow rate for damper setting calibration curve. 
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APPENDIX B. PDPA UNCERTAINTY ANALYSIS 

 

The PDPA measurement is subject to several sources of variance.  Preliminary data 

show that droplet size distribution is highly dependent on location within the spray.  This is a 

possible source of error because the positioning of the nozzle was performed by observation 

of the probe volume in the spray.  Another issue is that the spray angle changed slightly in 

response to changes in operating conditions, including both fuel type and atomization air 

pressure.  These can cause changes in readings for errors in nozzle placement.   

Table 9: PDPA preliminary results for water. 

Atomizing Air 

Pressure(psi) 

Axial 

Distance(in) 

Radial 

Distance(in) 

SMD(μm) 

Run 1 

SMD(μm)  

Run 2 

SMD(μm)  

Run 3 COV 

25 3 0 38.38 36.13 35.41 0.0655 

35 3 0 27.82 28.85 28.16 0.0097 

25 3 1 43.14 45.92 42.51 0.0750 

35 3 1 37.88 35.83 36.01 0.0352 

25 3 2 103.07 103.82 103.51 0.0013 

35 3 2 91.51 92.37 90.62 0.0083 

35 2 0 37.22 

   35 2 1 51.32 52.89 54.39 0.0445 

35 2 2 102.13 

    

The data shown in Table 9 are SMD readings for a variety of locations within two 

different atomization pressure sprays of water.  For most of these points, three runs were 

taken sequentially without adjusting nozzle location, atomization pressure, or any other 

parameters to confirm that each measurement was repeatable.  This is shown by the low 

coefficient of variance (COV) for each set of three runs, with all COV values less than 0.08.  

It can be accepted that the measurement of each point is repeatable. 
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Geometric trends in the spray can also be observed from Table 9.  Looking at the 

coordinates of the measurement, it can be seen that the spray consists of much smaller 

droplets in the center than at the edge of the spray, with varying sizes in between. It can also 

be observed that this distribution is much different at a plane 2 in. from the nozzle than 3in.  

This shows that measurements will be sensitive to sampling locations within a spray.   

The large droplets at the edge of the spray are likely to have an effect on combustion 

performance because large droplets can lead to poor atomization, long burnout time and 

locally rich areas.  These problems contribute to poor flame stability and increased 

production of emissions, especially PM.  This means that the SMD at the edge of the spray 

can impact combustion performance and should be measured during the spray testing.   

Another challenge is that the spray angle of the nozzle changes with changes in 

operating conditions.  An issue arises because a fixed point in space may not correspond to a 

representative comparison between two sprays, for instance a point at the edge of one spray 

could lie completely outside of the cone of a narrower spray.  This is corrected by 

observation for each run, especially in cases where the sampling point is to be at the edge of 

the spray cone.  Measurements along the axis of the spray are not subject to this sensitivity, 

but are still subject to errors caused by misalignment.   It is shown that the measurement of 

each point is repeatable, but that any error most likely comes from imperfect positioning of 

the nozzle or judgment errors in determining representative points to sample. 
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APPENDIX C. MODIFIED SWIRLER 

 

Other researchers have found that the swirl plate of swirl stabilized pyrolysis oil 

flames can have a substantial effect on flame stability and pollutant emission.
47

  A swirler 

was made with the intent of enhancing the swirl to reduce emissions.  The new swirler was 

made to be interchangeable with the factory original swirler to facilitate comparison tests.  

The factory swirler had small swirl vanes that protruded into the combustion area, while the 

new swirler had wider, more open swirl vanes that were recessed away from the combustion 

area, with the intent of creating a more airfoil shaped swirl vane to further enhance swirl 

effects.  These two swirlers are shown side by side in Figure 177. 

 

Figure 17: Original factory swirler (left) and modified custom swirler (right). 

 

The factory and modified swirlers were characterized by their effective area in an 

orifice flow system by measuring pressure drop across the swirler with respect to air mass 

flow rate through the swirler.  Airflow was controlled by an Alicat mass flow controller, 
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while pressure was measured with an oil manometer.  Effective area can be calculated by 

solving for area in the orifice flow equation. The flow needs to be increased until a set of 

conditions is reached where the swirler behaves like an ideal orifice, with the calculated 

effective area leveling out to a constant value between conditions.   

      √
   

 
 

Q is the volumetric flow rate of air, and ρ is the density, in this case 1.24 kg/m
3
.  Cd is 

the discharge coefficient which is applied to known structures in order to correct for different 

geometries given a characteristic length.  In this case, the characteristic length is the subject 

of study, and Cd is assumed to be 1.  This is consistent between both swirlers, so it is a useful 

comparison. 

Table 10: Δp and Ae for varying air flow rate for factory and custom swirlers.  

Airflow Q (m
3
/s) Δp (pa) Δp (pa) Factory Ae (m

2
) Custom Ae (m

2
) 

0.0000 0 0     

0.0017 0 0     

0.0033 0 0     

0.0050 2.49 0 0.00249   

0.0067 2.49 2.49 0.00333 0.00333 

0.0083 4.98 2.49 0.00294 0.00416 

0.0100 7.47 2.49 0.00288 0.00499 

0.0117 9.96 2.49 0.00291 0.00582 

0.0133 9.96 2.49 0.00333 0.00665 

0.0150 14.94 4.98 0.00306 0.00529 

0.0167 17.43 4.98 0.00314 0.00588 

0.0183 19.92 7.47 0.00323 0.00528 

0.0200 22.41 7.47 0.00333 0.00576 

0.0217 27.39 9.96 0.00326 0.00541 

0.0233 29.88 9.96 0.00336 0.00582 

0.0250 34.86 12.45 0.00333 0.00558 

  Average Ae of last 5 runs 0.00330 0.00557 
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As shown in Table 10, the effective area for the custom swirler is larger than for the 

factory swirler.  This is due to the larger, more open swirl vanes in the custom swirler, which 

was found in previous work to encourage a smaller flame cone angle and increased mixing 

rates.
47
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APPENDIX D. FUEL AGING TESTS 

 

This section discusses a set of samples that were analyzed using instruments 

previously described to measure higher heating value (HHV) and to perform thermo-

gravimetric analysis (TGA).  These samples were aged at various temperatures using the hot 

plate apparatus discussed in experimental setup and then sent to the Biorenewables Research 

Laboratory (BRL) at Iowa State University.  The sample set included one that was “aged” at 

room temperature and provides some insight into the fuel properties aside from any possible 

effects from the elevated temperature aging process.  Therefore, these results are applicable 

to fuel samples used for combustion and spray testing. 

Table 11: Higher heating value test results for aged samples. 

Sample Ethanol Percentage 
Aging Temperature, 30 Minutes 

20 °C 30 °C 40 °C 50 °C 

100% Pyrolysis Oil 4015 3926 4039 4038 

90% Pyrolysis Oil, 10% Ethanol 4242 4233 4224 4236 

80% Pyrolysis Oil, 20% Ethanol 4387 4437 4437 4478 

50% Pyrolysis Oil, 50% Ethanol 5006 5109 5029 4882 
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Figure 18: Higher heating value test results for aged samples. 

 

The results of Figure 18 and Table 11 show that there is very little effect correlated to 

the aging process applied.  This is likely because the samples were aged for only a relatively 

short time so that very little change could occur.  It is also possible that changes took place 

but did not have a significant effect on HHV, much the way that hydrocarbon distillates all 

tend to have very similar HHV, despite being very different fuels.  Some increase is observed 

with increasing ethanol content, due to the higher HHV of ethanol than pyrolysis oil.   

Table 122 shows the full TGA results for the samples.  There was a problem with the 

measurement of the 10% ethanol pyrolysis oil mixture that was aged at 40°C; the percentages 

did not add up to 100.  Moisture is defined as constituents that evaporate before 105°C.  This 

includes water, added ethanol, and any other substances originally contained in the pyrolysis 

oil which evaporates in the temperature range.  Fixed carbon includes substances which do 
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not leave the crucible until oxygen is introduced to allow combustion, and ash is what 

remains after combustion. 

 

 

Figure 19: Weight percentage of moisture in aged samples. 
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Figure 20: Weight percentage of volatiles in aged samples. 

 

 

Figure 21: Weight percentage of fixed carbon in aged samples. 
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Figure 22: Weight percentage of ash in aged samples. 

 

Table 12: Full TGA analysis for aged samples. 

Sample 
Moisture 

(wt%) 
Volatiles (wt%) 

Fixed Carbon 

(wt%) 
Ash (wt%) 

100% Pyrolysis Oil 20 C 42.05 41.41 16.45 0.1187 

10% Ethanol 20 C 42.45 39.57 17.71 0.3031 

20% Ethanol 20 C 47.13 36.29 16.22 0.3825 

50% Ethanol 20 C 64.04 24.95 10.75 0.2751 

100% Pyrolysis Oil 30 C 42.11 40.47 17.12 0.3238 

10% Ethanol 30 C 42.49 39.84 17.47 0.2233 

20% Ethanol 30 C 46.30 37.42 16.24 0.0685 

50% Ethanol 30 C 65.08 24.55 10.13 0.2527 

100% Pyrolysis Oil 40 C 38.41 42.42 18.89 0.2532 

10% Ethanol 40 C x x x x 

20% Ethanol 40 C 47.21 36.93 15.90 0.0140 

50% Ethanol 40 C 64.01 24.79 11.11 0.0945 

100% Pyrolysis Oil 50 C 34.72 45.30 19.79 0.2069 

10% Ethanol 50 C 39.83 42.38 17.75 0.1257 

20% Ethanol 50 C 47.66 36.52 15.82 0.0244 

50% Ethanol 50 C 59.75 28.62 11.90 0.2514 
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These figures graphically depict the levels of composition of the four component 

groups.  These figures do not show substantial differences between samples that were aged 

differently.  Figure 19 shows that moisture percentage increases with the addition of ethanol. 

This is because ethanol is evaporated in the same temperature regime as water, causing it to 

be analyzed as moisture by this procedure.  The resulting amounts are proportional to the 

effects caused by dilution with ethanol.  The volatile components shown in Figure 20 are 

shown to be reduced by the addition of ethanol by an amount attributed to replacement of 

pyrolysis oil with ethanol, which would evaporate in the volatile regime.  Fixed carbon, 

shown in Figure 21, is also reduced with ethanol in the same manner.  These results indicate 

that the aging process used and mixtures with ethanol do not have effects outside of diluting 

the sample.  The results for ash, shown in Figure 22, are far too inconsistent to be conclusive.  

This large variance is caused by the very small amounts of sample which remain in the form 

of ash compared to other constituents.  It is also possible that ash is not nonuniformly 

distributed amongst the samples at the time they were prepared, despite mixing practices. 
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APPENDIX E. REID VAPOR PRESSURE TESTS 

 

The Reid Vapor Pressure test (RVP) is an industry standard normally used to 

determine the quality of light distilled fuels such as gasoline to analyze their volatility 

performance.  This is useful in adjusting composition for seasonal changes, for instance, a 

‘winter blend’ will call for a higher volatility to help facilitate cold starting in automobiles.  

The apparatus used for the test consists of a set of temperature-controlled pressure chambers 

with pressure gauges.  The procedure used for the test is specified by ASTM D323.  A 

sample is cooled to 0° C (32° F), then put into the bottom segment of the chamber, shown in 

Figure 23, which is also cooled to a matching temperature beforehand.  This chamber is then 

sealed and the apparatus is raised to a final temperature of 37.8° C (100° F), agitating 

periodically.  The fuel is allowed to evaporate inside the chamber until reaching equilibrium 

vapor pressure.  The total gauge pressure measured at the equilibrium represents the volatility 

measurement of the fuel.  This test is different than the actual equilibrium vapor pressure 

because interactions between fuel and air in the chamber can affect the result, producing 

more useful results for certain applications. 
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Figure 23: Reid vapor pressure test apparatus, including water bath (left) and chamber 

(right). 

 

The Reid Vapor Pressure test is a widely accepted measurement technique for 

studying the volatility of certain fuels as it pertains to combustion.  Because of this, a set of 

samples was prepared for testing to better characterize the fuels used for this study.  Samples 

included pure pyrolysis oil, 20% ethanol in pyrolysis oil, and #2 fuel oil, and pure ethanol for 

a comparison to the pyrolysis oil mixture.  Unfortunately, the pure pyrolysis oil sample 

became too thick to pour in a timely fashion as called for the ASTM procedure, so the test 
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was applied only to the other three samples.  The results are shown in Table 13: Reid vapor 

pressure test results. 

Table 13: Reid vapor pressure test results. 

Fuel Sample Measured Pressure (psi) 

#2 Fuel oil 0.30 

Ethanol 1.87 

20% Ethanol Bio-oil 1.85 

 

 The results of this test are interesting in that there is a large difference between fuel 

oil and pyrolysis oil mixtures that does not seem to have a large impact on combustion 

properties.  This is because the temperature ranges used for the test represent a very different 

set of conditions than those seen by fuel droplets in a spray combustion environment.  The 

Reid Vapor Pressure test is used for volatile fuel such as gasoline where fuel is fully 

evaporated in relatively cool air before entering the combustion chamber.  This is not the 

case in spray flames where droplets are often still evaporating even inside the flame zone, 

with surrounding temperatures much higher than 100°F. 

Another interesting finding of this test is that ethanol and mixtures of ethanol and 

pyrolysis oil seem to have the same result.  This is again due to an unusual application of a 

test which has been developed for refined fuels.  In refined fuels, all components have similar 

vaporizing characteristics, because that is how they are sorted at the refinery.  This causes the 

substance to display a total vapor pressure that is representative of the whole sample.  For a 

mixed sample such as this one, the lighter components will continue evaporating until an 

equilibrium is reached for that species, while heavier species contribute little to the vapor 

composition.  This results in a measure of only the most volatile substances in the mixture.  
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From this result and understanding this phenomenon, it can be safely concluded that 

pyrolysis oil is not more volatile than ethanol.   
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